• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hyperaccumulation du Cadmium par Noccaea caerulescens : cinétique, répartition et prédiction / Cadmium hyperaccumulation by Noccaea caerulescens : kinetics, distribution and prediction

Lovy, Lucie 29 October 2012 (has links)
La prédiction du transfert de cadmium du sol à la plante passe par l'élaboration d'un modèle décrivant la dynamique du métal dans le végétal. Cette thèse analyse les cinétiques d'accumulation du Cd dans Noccaea caerulescens, à l'échelle de la plante entière, de ses organes et au cours de son cycle de végétation. Elle cherche également à établir un modèle prédictif simple, fondé sur les relations entre concentrations d'exposition et en Cd dans la plante. Lorsque N. caerulescens est exposée à une concentration constante en conditions contrôlées, l'allocation de biomasse et la translocation du Cd aux parties aériennes sont constantes dans le temps. Une relation linéaire étroite existe entre la quantité de Cd prélevé, la biomasse et la concentration d'exposition, représentée par le facteur de bioconcentration (BCF). Le développement de la plante n'a pas d'effet sur l'influx racinaire en Cd, qui reste constant dans le temps et proportionnel à l'exposition. Ces résultats suggèrent que le Cd est alloué aux différents tissus aériens de la plante sans prédilection. A contrario, lors des cultures extérieures en terre, les concentrations en Cd, Ni et Zn diminuent au cours du temps après la vernalisation. Les trois métaux ont des comportements similaires en termes d'accumulation dans les différents tissus. La quantité maximale de Cd dans les organes aériens est observée à 2100°Cj. Lorsque la plante est en fleur, elle ne semble pas présenter d'organe aérien privilégié pour l'hyperaccumulation du Cd, les BCF étant constants dans le temps. L'utilisation du BCF permet une prédiction correcte des concentrations dans les parties aériennes, contrairement au modèle de Barber-Cushman / Prediction of cadmium transfer from soil to plant can be achieved by the development of a model describing metal dynamics in the plant. This thesis analyzes Cd accumulation and distribution kinetics in Noccaea caerulescens, in the whole plant and its organs during a growth cycle. A simple predictive model, based on the relationship between Cd exposure concentration and plant Cd concentration, is also developped. This work is based on long-term experiments in controlled conditions with a constant exposure and on outside soil experiments. When N. caerulescens is exposed to a constant concentration under controlled conditions, biomass allocation and Cd translocation to the shoots are constant over time. A strong linear relationship exists between the amount of Cd taken up, biomass and exposure concentration, represented by the bioconcentration factor (BCF). The plant development has no effect on Cd root influx, which remains constant during time and proportional to Cd exposure concentration. These results suggest that Cd is allocated to the various shoots? tissues without predilection. On the other hand, in the field, Cd, Ni, end Zn concentrations in shoots decrease over time after vernalization. The three metals have similar behaviors in terms of accumulation in the different tissues. The maximum amount of Cd in shoots is observed at 2100°Cdays. When the plant is in flower, no privileged shoots parts appear in Cd hyperaccumulation, the BCF is constant over time. The use of the BCF, measured in controlled conditions, allows a correct prediction of shoots concentrations, unlike the Barber-Cushman model
2

Mécanismes et modélisation de l'accumulation foliaire du nickel par l'hyperaccumulateur Leptoplax emarginata / Mechanisms and modelling of foliar accumulation of nickel by the hyperaccumulator Leptoplax emarginata

Coinchelin, David 15 February 2011 (has links)
Des modèles prédictifs de prélèvement d’éléments traces métalliques (ETM) par des plantes hyperaccumulatrices sont à développer pour rendre la phytoextraction opérationnelle. Ce travail a pour objectif de développer, calibrer et valider un modèle biophysique combiné d’accumulation foliaire et de mise en solution du nickel lors de cultures de l’hyperaccumulateur Leptoplax emarginata sur un sol fertilisé et contaminé en Ni. Une partie de ce modèle intègre un facteur de bioconcentration lié à la transpiration (TSCF) qui caractérise le mode de transport principal du Ni à travers la racine et jusqu’aux feuilles, lors d’une cinétique couplée de production de biomasse foliaire et de transpiration. Sur des plantes intactes et transpirantes, nous avons déterminé un TSCFNi supérieur à 1 du fait : (i) d’une grande perméabilité des racines à la fois au nickel et à l’eau et (ii) d’un transport actif du Ni largement prédominant. A l’opposé, le TSCFNi du blé de Printemps, plante exclusive, était inférieur à 0,02, et le coefficient de réflection correspondant proche de 1, ce qui caractérise des racines perméables à l’eau mais quasiment pas au nickel. L’exceptionnelle capacité de L. emarginata à accumuler et à tolérer le nickel dans ses feuilles, et plus précisément dans ses épidermes, serait également attribuable à ses transpiration et production de protéines soufrées très élevées, tout particulièrement au niveau de ses feuilles les plus jeunes. Enfin, après avoir couplé notre modèle biophysique d’accumulation foliaire du nickel au modèle de mise en solution des ETM développé par Ingwersen et al. (2006), nous avons optimisé les paramètres du modèle, notamment les paramètres physico-chimiques, et avons validé notre modèle sur des données cinétiques conjointes de quantités de nickel accumulé dans les feuilles de l’hyperaccumulateur et de concentration en nickel dans la solution du sol. Les perspectives de ce travail sont (i) un approfondissement des relations entre l’accumulation foliaire du nickel (ou d’un autre ETM) par un hyperaccumulateur, la transpiration et la production de protéines soufrées permettant une complexation de l’ETM et (ii) une adaptation du modèle pour le terrain, ce qui nécessite notamment une meilleure utilisation du couplage production de biomasse foliaire/transpiration et une prise en compte des cinétiques d’humectation et de dessiccation du sol (équation de Richards de transport d’eau en conditions non saturées), ce qui conduira à la mise au point d’un modèle 1D (la profondeur du sol) d’accumulation foliaire et de mise en solution d’ETM / To make phytoextraction practically feasible, predictive models of metal uptake by hyperaccumulators need to be developed. The aim of this work was to design, calibrate and validate a biophysical combined model of nickel foliar accumulation and availability in soil solution during cultures of the hyperaccumulator Leptoplax emarginata on a fertilized and Ni-contaminated sandy topsoil. We succeed in this. Part of the model integrates a transpiration bioconcentration factor (TSCF) which characterized the main Ni transport through the root and to the leaves. We determined a TSCF value greater than 1 for L. emarginata, which was attributed to (i) a high root permeability to both Ni and water and (ii) a predominant Ni active transport. By contrast, Spring wheat was characterized by a TCSF value less than 0.02 and a reflection coefficient very near 1, indicating that its roots are permeable to water but quite unpermeable to nickel. The high capacity of L. emarginata to tolerate and accumulate Ni in their leaves should also be attributed to its large transpiration and sulfur accumulation, particularly in their youngest leaves. Perspectives of this work are (i) a detailed study on relations between Ni accumulation, transpiration and production of sulphur proteins and (ii) a field adaptation of the model taken into account water transport in unsaturated conditions, leading to design a combined 1D model of nickel foliar accumulation and availability in soil solution

Page generated in 0.123 seconds