Spelling suggestions: "subject:"factorisation dde tenseur"" "subject:"factorisation dee tenseur""
1 |
Novel learning and exploration-exploitation methods for effective recommender systems / Nouveaux algorithmes et méthodes d’exploration-exploitation pour des systèmes de recommandations efficacesWarlop, Romain 19 October 2018 (has links)
Cette thèse, réalisée en entreprise en tant que thèse CIFRE dans l'entreprise fifty-five, étudie les algorithmes des systèmes de recommandation. Nous avons proposé trois nouveaux algorithmes améliorant l'état de l'art que ce soit en termes de performance ou de prise en compte des contraintes industrielles. Pour cela nous avons proposé un premier algorithme basé sur la factorisation de tenseur, généralisation de la factorisation de matrice couramment appliquée en filtrage collaboratif.Nous avons ensuite proposé un algorithme permettant d'améliorer l'état de l'art des solutions de complétion de paniers. L'objectif des algorithmes de complétion de paniers est de proposer à l'utilisateur un nouveau produit à ajouter au panier qu'il/elle est en train d'acheter permettant ainsi d'augmenter la valeur d'un utilisateur. Pour cela nous nous sommes appuyés sur les processus ponctuels déterminantal. Nous avons généralisé l'approche de la complétion de paniers par DPP en utilisant une approche tensorielle. Enfin nous avons proposé un algorithme d'apprentissage par renforcement permettant d'alterner entre différents algorithmes de recommandation. En effet, utiliser toujours le même algorithme peut avoir tendance à ennuyer l'utilisateur pendant un certain temps, ou à l'inverse lui donner de plus en plus confiance en l'algorithme. Ainsi la performance d'un algorithme donné n'est pas stationnaire et dépend de quand et à quelle fréquence celui-ci a été utilisé. Notre algorithme d'apprentissage par renforcement apprend en temps réel à alterner entre divers algorithmes de recommandations dans le but de maximiser les performances sur le long terme. / This thesis, written in a company as a CIFRE thesis in the company fifty-five, studies recommender systems algorithms. We propose three new algorithms that improved over state-of-the-art solutions in terms of performance or matching industrial constraints. To that end, we proposed a first algorithm based on tensor factorization, a generalization of matrix factorization, commonly used on collaborative filtering. We then proposed a new algorithm that improves basket completion state-of-the-art algorithms. The goal of basket completion algorithms is to recommend a new product to a given user based on the products she is about to purchase in order to increase the user value. To that end we leverage Determinantal Point Processes, i.e., probability measure where the probability to observe a given set is proportional to the determinant of a kernel matrix. We generalized DPP approaches for basket completion using a tensor point of view coupled with a logistic regression. Finally, we proposed a reinforcement learning algorithm that allows to alternate between several recommender systems algorithms. Indeed, using always the same algorithm may either bore the user for a while or reinforce her trust in the system. Thus, the algorithm performance is not stationary and depends on when and how much the algorithm has been used in the past. Our reinforcement learning algorithm learns in real time how to alternate between several recommender system algorithms in order to maximize long term performances, that is in order to keep the user interested in the system as long as possible.
|
2 |
Méthodes pour l'analyse de grands volumes d'images appliquées à la détection précoce de la maladie d'Alzheimer par analyse de PDG-PET scansKodewitz, Andreas 18 March 2013 (has links) (PDF)
Dans cette thèse, nous explorons de nouvelles méthodes d'analyse d'images pour la détection précoce des changements métaboliques cérébraux causés par la maladie d'Alzheimer (MA). Nous introduisons deux apports méthodologiques que nous appliquons à un ensemble de données réelles. Le premier est basé sur l'apprentissage automatique pour créer une carte des informations de classification pertinente dans un ensemble d'images. Pour cela nous échantillonnons des blocs de voxels de l'image selon un algorithme de Monte-Carlo. La mise en oeuvre d'une classification basée sur ces patchs 3D a pour conséquence importante la réduction significative du volume de patchs à traiter, et l'extraction de caractéristiques dont l'importance est statistiquement quantifiable. Cette méthode s'applique à différentes caractéristiques de l'image et donc est adaptée à des types d'images très variés. La résolution des cartes produites par cette méthode peut être affinée à volonté et leur contenu informatif est cohérent avec les résultats antérieurs basés sur les statistiques sur les voxels obtenus dans la littérature. Le second apport méthodologique porte sur la conception d'un nouvel algorithme de décomposition de tenseur d'ordre important, adapté à notre application. Cet algorithme permet de réduire considérablement la consommation de mémoire et donc évite la surcharge de la mémoire. Il autorise la décomposition rapide de tenseurs, y compris ceux de dimensions très déséquilibrées. Nous appliquons cet algorithme en tant que méthode d'extraction de caractéristiques dans une situation où le clinicien doit diagnostiquer des stades MA précoce ou MCI (Mild Cognitive Impairment) en utilisant la TEP FDG seule. Les taux de classification obtenus sont souvent au-dessus des niveaux de l'état de l'art. Dans le cadre de ces tâches d'analyse d'images, nous présentons notre source de données, les scans de patients retenus et les pré-traitements réalisés. Les principaux aspects que nous voulons prendre en compte sont la nature volumétrique des données, l'information a priori disponible sur la localisation des changements métaboliques et comment l'identification des zones de changements métaboliques participe à la réduction de la quantité de données à analyser et d'extraire des caractéristiques discriminantes. Les méthodes présentées fournissent des informations précises sur la localisation de ces changements métaboliques. Les taux de classification allant jusqu'à 92,6% pour MA et 83,8% pour MCI. En outre, nous sommes capables de séparer les patients MCI stables des MCI patients évoluant vers la MA dans les 2 ans après l'acquisition du PET-scan avec un taux de classification de 84.7%. Ce sont des étapes importantes vers une détection fiable et précoce de la MA.
|
3 |
Modèles d'embeddings à valeurs complexes pour les graphes de connaissances / Complex-Valued Embedding Models for Knowledge GraphsTrouillon, Théo 29 September 2017 (has links)
L'explosion de données relationnelles largement disponiblessous la forme de graphes de connaissances a permisle développement de multiples applications, dont les agents personnels automatiques,les systèmes de recommandation et l'amélioration desrésultats de recherche en ligne.La grande taille et l'incomplétude de ces bases de donnéesnécessite le développement de méthodes de complétionautomatiques pour rendre ces applications viables.La complétion de graphes de connaissances, aussi appeléeprédiction de liens, se doit de comprendre automatiquementla structure des larges graphes de connaissances (graphes dirigéslabellisés) pour prédire les entrées manquantes (les arêtes labellisées).Une approche gagnant en popularité consiste à représenter ungraphe de connaissances comme un tenseur d'ordre 3, etd'utiliser des méthodes de décomposition de tenseur pourprédire leurs entrées manquantes.Les modèles de factorisation existants proposent différentscompromis entre leur expressivité, et leur complexité en temps et en espace.Nous proposons un nouveau modèle appelé ComplEx, pour"Complex Embeddings", pour réconcilier expressivité etcomplexité par l'utilisation d'une factorisation en nombre complexes,dont nous explorons le lien avec la diagonalisation unitaire.Nous corroborons notre approche théoriquement en montrantque tous les graphes de connaissances possiblespeuvent être exactement décomposés par le modèle proposé.Notre approche, basées sur des embeddings complexesreste simple, car n'impliquant qu'un produit trilinéaire complexe,là où d'autres méthodes recourent à des fonctions de compositionde plus en plus compliquées pour accroître leur expressivité.Le modèle proposé ayant une complexité linéaire en tempset en espace est passable à l'échelle, tout endépassant les approches existantes sur les jeux de données de référencepour la prédiction de liens.Nous démontrons aussi la capacité de ComplEx àapprendre des représentations vectorielles utiles pour d'autres tâches,en enrichissant des embeddings de mots, qui améliorentles prédictions sur le problème de traitement automatiquedu langage d'implication entre paires de phrases.Dans la dernière partie de cette thèse, nous explorons lescapacités de modèles de factorisation à apprendre lesstructures relationnelles à partir d'observations.De part leur nature vectorielle,il est non seulement difficile d'interpréter pourquoicette classe de modèles fonctionne aussi bien,mais aussi où ils échouent et comment ils peuventêtre améliorés. Nous conduisons une étude expérimentalesur les modèles de l'état de l'art, non pas simplementpour les comparer, mais pour comprendre leur capacitésd'induction. Pour évaluer les forces et faiblessesde chaque modèle, nous créons d'abord des tâches simplesreprésentant des propriétés atomiques despropriétés des relations des graphes de connaissances ;puis des tâches représentant des inférences multi-relationnellescommunes au travers de généalogies synthétisées.À partir de ces résultatsexpérimentaux, nous proposons de nouvelles directionsde recherches pour améliorer les modèles existants,y compris ComplEx. / The explosion of widely available relational datain the form of knowledge graphsenabled many applications, including automated personalagents, recommender systems and enhanced web search results.The very large size and notorious incompleteness of these data basescalls for automatic knowledge graph completion methods to make these applicationsviable. Knowledge graph completion, also known as link-prediction,deals with automatically understandingthe structure of large knowledge graphs---labeled directed graphs---topredict missing entries---labeled edges. An increasinglypopular approach consists in representing knowledge graphs as third-order tensors,and using tensor factorization methods to predict their missing entries.State-of-the-art factorization models propose different trade-offs between modelingexpressiveness, and time and space complexity. We introduce a newmodel, ComplEx---for Complex Embeddings---to reconcile both expressivenessand complexity through the use of complex-valued factorization, and exploreits link with unitary diagonalization.We corroborate our approach theoretically and show that all possibleknowledge graphs can be exactly decomposed by the proposed model.Our approach based on complex embeddings is arguably simple,as it only involves a complex-valued trilinear product,whereas other methods resort to more and more complicated compositionfunctions to increase their expressiveness. The proposed ComplEx model isscalable to large data sets as it remains linear in both space and time, whileconsistently outperforming alternative approaches on standardlink-prediction benchmarks. We also demonstrateits ability to learn useful vectorial representations for other tasks,by enhancing word embeddings that improve performanceson the natural language problem of entailment recognitionbetween pair of sentences.In the last part of this thesis, we explore factorization models abilityto learn relational patterns from observed data.By their vectorial nature, it is not only hard to interpretwhy this class of models works so well,but also to understand where they fail andhow they might be improved. We conduct an experimentalsurvey of state-of-the-art models, not towardsa purely comparative end, but as a means to get insightabout their inductive abilities.To assess the strengths and weaknesses of each model, we create simple tasksthat exhibit first, atomic properties of knowledge graph relations,and then, common inter-relational inference through synthetic genealogies.Based on these experimental results, we propose new researchdirections to improve on existing models, including ComplEx.
|
Page generated in 0.0968 seconds