• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fadiga funcional e estrutural em fios de NiTi com memória de forma submetidos a ciclos termomecânicos / Functional and structural fatigue of NiTi shape memory wires subjected to thermomechanical cycling

Barcelos, Arthur Pinheiro 16 March 2018 (has links)
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2018. / Submitted by Raquel Viana (raquelviana@bce.unb.br) on 2018-08-07T21:48:07Z No. of bitstreams: 1 2018_ArthurPinheiroBarcelos.pdf: 14201406 bytes, checksum: 22cffe289d9dbf4258328e4dcf14fa84 (MD5) / Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-08-08T19:06:21Z (GMT) No. of bitstreams: 1 2018_ArthurPinheiroBarcelos.pdf: 14201406 bytes, checksum: 22cffe289d9dbf4258328e4dcf14fa84 (MD5) / Made available in DSpace on 2018-08-08T19:06:21Z (GMT). No. of bitstreams: 1 2018_ArthurPinheiroBarcelos.pdf: 14201406 bytes, checksum: 22cffe289d9dbf4258328e4dcf14fa84 (MD5) Previous issue date: 2018-08-07 / As Ligas com Memória de Forma (LMF) apresentam dois comportamentos termomecânicos diferenciados que podem ser explorados para o desenvolvimento de muitas aplicações: o efeito memória de forma e a pseudoelasticidade. O efeito memória de forma é caracterizado por deformações reversíveis originárias de variações de temperatura do material devido a transformações martensíticas termoelásticas. Esse princípio de funcionamento estimula a aplicação de LMF como atuadores, apresentando algumas vantagens em relação a outros atuadores convencionais devido à sua excepcional redução de peso e volume de projetos. A escassez na literatura de métodos definitivos para prever a vida útil do atuador de LMF motiva o estudo de seu comportamento cíclico e fadiga. Os atuadores baseados em ligas com memória de forma podem acumular deformações plásticas e sofrer ruptura, além de perder gradualmente a capacidade de recuperação da forma, conhecida como fadiga funcional, associada às repetidas transformações induzidas por temperatura. Nesse âmbito, a fadiga estrutural e a fadiga funcional de fios NiTi SmartFlex® submetidos à transformação de fase martensítica induzida termicamente sob tensão mecânica constante são investigadas. Foram realizados 24 ensaios de ciclagem termomecânica em diferentes condições de aquecimento e resfriamento e sob quatro diferentes níveis de tensão axial. A influência dessas condições de ensaio foram analisadas, a degradação do efeito memória de forma foi visualizada em curvas de evolução da deformação e a fadiga estrutural foi estudada por meio de três diferentes curvas de ajuste: curvas S-N, curvas que relacionam a deformação plástica com a vida em fadiga baseadas nas relações de Coffin-Manson e curvas baseadas no modelo de plano crítico de Smith, Watson e Topper. Conclui-se que o aumento na taxa de aquecimento e resfriamento e na tensão mecânica pode resultar em falha precoce do material. No âmbito de fadiga funcional, as condições estabelecidas nos ensaios resultaram em alteração na deformação recuperável inferior a 1% para o material estudado. / Shape Memory Alloys (SMA) presents two exceptional thermomechanical behaviors that can be used for development of many applications: shape memory effect and superelasticity. The shape memory effect is characterized by reversible deformation under thermal load due to thermoelastic martensitic transformations. This operation principle encourages the application of SMA as actuators, presenting some advantages over other conventional actuators because of their weight and volume saving. The lack of definite methods for predicting SMA actuator lifetime motivates the study of its cyclic behavior and fatigue. SMA actuators may accumulate plastic deformations and suffer rupture, in addition to gradually losing shape recovery, known as functional fatigue, associated with the repeated thermal induced transformations. The structural thermomechanical fatigue and functional fatigue of NiTi SmartFlex® wires undergoing thermally induced martensitic phase transformation with constant stress are investigated. An amount of 24 thermomechanical cycling tests were performed under different heating and cooling conditions and under four different axial stress levels. The influence of these test conditions was analyzed, the wire strain evolution was evaluated to determine the degradation of shape memory effect and three power law curves were used to fit fatigue failure data: S-N curves, plastic strain versus fatigue life curves based on Coffin-Manson relation, and curves based on the critical plane model of Smith, Watson, and Topper. It can be concluded that the application of high heating/cooling rate and high stress can result in early failure of the material. The test conditions did not imply significant functional fatigue (recoverable strain below 1%).
2

Fadiga de fios superelásticos de liga com memória de forma NI-TI em regime de flexão alternada: uma análise usando planejamento fatorial.

ARAÚJO, Magna Silmara de Oliveira. 15 June 2018 (has links)
Submitted by Emanuel Varela Cardoso (emanuel.varela@ufcg.edu.br) on 2018-06-15T19:15:40Z No. of bitstreams: 1 MAGNA SILMARA DE OLIVEIRA ARAÚJO – DISSERTAÇÃO (PPG-CEMat) 2016.pdf: 3448861 bytes, checksum: b9341836ea322c6702a8fe974682fc68 (MD5) / Made available in DSpace on 2018-06-15T19:15:40Z (GMT). No. of bitstreams: 1 MAGNA SILMARA DE OLIVEIRA ARAÚJO – DISSERTAÇÃO (PPG-CEMat) 2016.pdf: 3448861 bytes, checksum: b9341836ea322c6702a8fe974682fc68 (MD5) Previous issue date: 2016-08-18 / Capes / As Ligas com Memória de Forma (LMF) pertencem a uma classe de ligas metálicas que possuem características funcionais únicas de Efeito Memória de Forma (EMF) e Superelasticidade (SE). As LMF do sistema Ni-Ti são as mais difundidas no mercado e podem ser encontradas em diversas aplicações que abrangem, principalmente, os campos de medicina e odontologia. No entanto, muitas destas aplicações acontece sob solicitações cíclicas ou variáveis, o que torna imprescindível o estudo da vida em fadiga destes tipos de materiais. Diante disto, o presente trabalho tem como objetivo analisar o comportamento em fadiga de fios superelásticos de LMF Ni-Ti com seção transversal circular e retangular, submetidos a ensaios dinâmicos em modo de flexão simples (Single Cantilever) utilizando um equipamento de Análise DinâmicoMecânica (DMA - Dynamic Mechanical Analysis). A vida em fadiga dos fios Ni-Ti foi avaliada por meio do número de ciclos até a ruptura em função das amplitudes de deformação aplicadas durante o processo de ciclagem mecânica. Adicionalmente, a fadiga funcional foi avaliada por meio do acompanhamento da evolução da força aplicada em função do número de ciclos para diferentes amplitudes de deformação (0,7; 1,0; 1,3 e 1,6%) e níveis diferentes de frequê ncia de carregamento (0,5 e 1,0Hz). A influência simultânea da amplitude de deformação e frequência de carregamento sob a vida em fadiga dos fios foi avaliada através de um Planejamento Fatorial. Observou-se, em geral, que a força sofre um leve aumento, de aproximadamente 5%, durante os primeiros ciclos, tendendo a se estabilizar e permanecendo praticamente constante até iniciar um decaimento devido ao processo de ruptura cíclica. Constatou-se também, através das curvas de Wöhler, que o fio de seção circular possui uma vida em fadiga superior àquela do fio de seção retangular. O Planejamento fatorial utilizado permitiu a obtenção de modelos estatísticos significativos e bem ajustados. Além disso, o número de ciclos até a fratura dos fios Ni-Ti depende de forma direta da amplitude de deformação cíclica e da frequência de ensaio, situando-se na faixa de 103 a 105 ciclos, caracterizando uma fadiga de baixo ciclo. / Shape Memory Alloys (SMA) belong to a class of metallic alloys that have unique functional characteristics: Shape Memory Effect (SME) and Superelasticity (SE). The Ni-Ti SMA system are the most widespread in the market and can be found in diverse applications covering mainly medical and odontology. However, many of these applications takes place under cyclic or variables loads, which makes it necessary to study the fatigue life of these materials. Therefore, the present study aims to analyze the fatigue behavior of Ni-Ti SMA superelastic wires with circular and rectangular, cross sections subjected to dynamic tests in simple bending mode (Single Cantilever) using a Dynamic Mechanical Analysis (DMA) equipment. The fatigue life of the Ni-Ti wires was evaluated by the number of cycles until break as a function of applied strain amplitudes during the mechanical cycling process. In addition, functional fatigue was assessed by monitoring the evolution of the applied force on the number of cycles for different deformation amplitudes (0.7, 1.0, 1.3 and 1.6%) and different levels of frequency loading (0.5 and 1.0Hz). The simultaneous influence of strain amplitude and frequency on fatigue life of the wires was assessed through a factorial design. It was observed generally that the strength under goes a slight increase of approximately 5% during the first cycles, tending to stabilize and remained virtually constant until starting a cyclic decay due to rupture process. It was also observed by means of Wöhler curves, that circular section wires has a higher fatigue life to that of the rectangular wires. The factorial design used allowed to obtain significant statistical models, predictive and well adjusted. Furthermore, the number of cycles to failure of the Ni-Ti wires depends directly of the cyclic strain amplitude and frequency of testing, to stand in the range 103 -105 cycles, characterizing a low cycle fatigue.

Page generated in 0.0668 seconds