• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Determination of the quality of environmental water using GC-MS based faecal sterol analysis / Chantel Swanepoel

Swanepoel, Chantel January 2014 (has links)
Faecal indicator bacteria have traditionally been used in the detection of faecal pollution in water, but due to concerns about the lack of reliability of these indicators, alternative methods have been developed. One of which is the detection of sterols present in human and animal excreta via GC-MS analysis of water in this study. The Szűcs method was used to detect six target sterols (coprostanol, cholesterol, dehydrocholesterol, stigmasterol, β-sitosterol, and stigmastanol) in environmental water samples. An initial study was done by analysing raw sewage and effluent (human faecal sterol biomarkers) and water samples were spiked with excreta from cattle, chickens, horses, pigs, and sheep to determine faecal sterol fingerprints. The method was evaluated for quantitation and differences between the water samples from each species. Following liquid-liquid extraction, silylation and derivatization, samples were analysed by GC-MS. Standard curve assays were linear up to 160ng and the limit for quantification was 20ng. The human faecal sterol biomarker was coprostanol, while herbivore profiles were dominated by terrestrial sterol biomarkers (stigmasterol and stigmastanol). Sterol fingerprints and differences in concentrations of sterols between various animals and between animals and humans occurred, providing the opportunity to determine whether faecal pollution was from humans or from animals. The method proved sensitive enough to evaluate faecal contamination in environmental water. Groundwater was collected from bore-holes and surface water samples were collected from the Baberspan Inland Lake. Physico-chemical parameters analysed indicated that pH for surface water samples was above 6.9. The total dissolved solids (TDS) in groundwater indicated that the water was not suitable for human consumption, but could be used for livestock watering. Surface water electrical conductivity (EC) and inorganic nitrates was too high to be used for irrigational purposes. Nitrates in groundwater were too high to be consumed by humans. In groundwater, the total coliform target water quality range (TWQR) was exceeded at 53% of sites analysed and faecal coliform TWQR were exceeded at 77% sites. Surface water samples complied with TWQR with regards to faecal coliforms for full contact recreational activities and livestock watering. The TWQR for E. coli, with regards to full contact recreational activities, was within a safe range for surface water. Faecal streptococci were found in 85% of groundwater sampling sites. And surface water faecal streptococci counts exceeded the TWQR for full contact recreational activities. There is no TWQR for faecal sterols in water, but concentrations of cholesterol and coprostanol was found at three of the groundwater sites analysed. This indicates faecal contamination from possible animal and human origin. Surface water samples analysed showed that the Harts River water is clean and free of faecal sterols, while the water analysed from the inflow, hotel and outflow, cholesterol eluted, which showed faecal contamination, possibly from animals. Faecal sterol markers could be detected in groundwater and surface water, adding an extra dimension to determining the quality of water systems. An optimization and sensitivity study of the method was done on waste water treatment plant (WWTP) raw sewage and effluent. The WWTP sample analysed form Potchefstroom and Carletonville WWTP yielded all six target sterols in the raw sewage water samples, but no sterols eluted in the effluent samples. The raw sewage water sample taken from the Fochville WWTP yielded all six target sterols as well, however, the effluent yielded an unknown compound as well as cholesterol. An alternative study was done where the effluent sample volume was increased. By increasing the volume of water, one can possibly increase the amount (“load”) of sterols extracted and analysed, resulting in a higher abundance of target sterols. By using the target qualifier ions of the six target sterols, and the GC-TOF/MS software, the target sterols could still be qualitatively determined. Optimal volume for raw sewage is 300 ml water sample as this is enough to yield all 6 target sterols. For optimum water quality monitoring via faecal sterol analysis of effluent and other environmental samples, at least 1L sample volume needs to be collected and analysed. The methods described here can be applied to the analysis of environmental water samples. The technical advantages also make it suitable for routine environmental monitoring of faecal pollution. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
2

Determination of the quality of environmental water using GC-MS based faecal sterol analysis / Chantel Swanepoel

Swanepoel, Chantel January 2014 (has links)
Faecal indicator bacteria have traditionally been used in the detection of faecal pollution in water, but due to concerns about the lack of reliability of these indicators, alternative methods have been developed. One of which is the detection of sterols present in human and animal excreta via GC-MS analysis of water in this study. The Szűcs method was used to detect six target sterols (coprostanol, cholesterol, dehydrocholesterol, stigmasterol, β-sitosterol, and stigmastanol) in environmental water samples. An initial study was done by analysing raw sewage and effluent (human faecal sterol biomarkers) and water samples were spiked with excreta from cattle, chickens, horses, pigs, and sheep to determine faecal sterol fingerprints. The method was evaluated for quantitation and differences between the water samples from each species. Following liquid-liquid extraction, silylation and derivatization, samples were analysed by GC-MS. Standard curve assays were linear up to 160ng and the limit for quantification was 20ng. The human faecal sterol biomarker was coprostanol, while herbivore profiles were dominated by terrestrial sterol biomarkers (stigmasterol and stigmastanol). Sterol fingerprints and differences in concentrations of sterols between various animals and between animals and humans occurred, providing the opportunity to determine whether faecal pollution was from humans or from animals. The method proved sensitive enough to evaluate faecal contamination in environmental water. Groundwater was collected from bore-holes and surface water samples were collected from the Baberspan Inland Lake. Physico-chemical parameters analysed indicated that pH for surface water samples was above 6.9. The total dissolved solids (TDS) in groundwater indicated that the water was not suitable for human consumption, but could be used for livestock watering. Surface water electrical conductivity (EC) and inorganic nitrates was too high to be used for irrigational purposes. Nitrates in groundwater were too high to be consumed by humans. In groundwater, the total coliform target water quality range (TWQR) was exceeded at 53% of sites analysed and faecal coliform TWQR were exceeded at 77% sites. Surface water samples complied with TWQR with regards to faecal coliforms for full contact recreational activities and livestock watering. The TWQR for E. coli, with regards to full contact recreational activities, was within a safe range for surface water. Faecal streptococci were found in 85% of groundwater sampling sites. And surface water faecal streptococci counts exceeded the TWQR for full contact recreational activities. There is no TWQR for faecal sterols in water, but concentrations of cholesterol and coprostanol was found at three of the groundwater sites analysed. This indicates faecal contamination from possible animal and human origin. Surface water samples analysed showed that the Harts River water is clean and free of faecal sterols, while the water analysed from the inflow, hotel and outflow, cholesterol eluted, which showed faecal contamination, possibly from animals. Faecal sterol markers could be detected in groundwater and surface water, adding an extra dimension to determining the quality of water systems. An optimization and sensitivity study of the method was done on waste water treatment plant (WWTP) raw sewage and effluent. The WWTP sample analysed form Potchefstroom and Carletonville WWTP yielded all six target sterols in the raw sewage water samples, but no sterols eluted in the effluent samples. The raw sewage water sample taken from the Fochville WWTP yielded all six target sterols as well, however, the effluent yielded an unknown compound as well as cholesterol. An alternative study was done where the effluent sample volume was increased. By increasing the volume of water, one can possibly increase the amount (“load”) of sterols extracted and analysed, resulting in a higher abundance of target sterols. By using the target qualifier ions of the six target sterols, and the GC-TOF/MS software, the target sterols could still be qualitatively determined. Optimal volume for raw sewage is 300 ml water sample as this is enough to yield all 6 target sterols. For optimum water quality monitoring via faecal sterol analysis of effluent and other environmental samples, at least 1L sample volume needs to be collected and analysed. The methods described here can be applied to the analysis of environmental water samples. The technical advantages also make it suitable for routine environmental monitoring of faecal pollution. / MSc (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
3

Hygiene Aspects of Greywater and Greywater Reuse

Ottosson, Jakob January 2003 (has links)
<p>Greywater is domestic household wastewater without inputfrom the toilet, i.e. wastewater from sinks, the shower,washing machine and dishwasher in a home. Source separation ofgreywater can be a strategy to enhance recirculation of plantnutrients and/or improve water use. The risk for transmissionof disease when reusing greywater is largely dependent on thecross-contamination by faeces. High levels of faecalindicators, mainly thermotolerant coliform bacteria, have beenreported in greywater, indicating substantial faecal pollution.However, growth of indicator bacteria within the system leadsto an overestimation of thefaecal input and thus the hygienerisk. The faecal input of the greywater in Vibyåsen,Sollentuna, North of Stockholm, was estimated to be 0.04 ±0.02 g faeces person-1 day-1 from the quantification of thefaecal sterol coprostanol, compared to 65 g, 5.2 g and 0.22 gp-1 d-1 using E. coli, enterococci and cholesterolrespectively.</p><p>Prevalence of pathogens in the population and the faecalload based on coprostanol concentrations were used to form thebasis of a screening-level quantitative microbial riskassessment (QMRA) that was undertaken for rotavirus, Salmonellatyphimurium, Campylobacter jejuni, Giardia intestinalis andCryptosporidium parvum, looking at the treatment required to bebelow an acceptable level of risk (10-3) for reuse or dischargeof the greywater. The different exposure scenarios simulated–groundwater recharge, direct contact, irrigation andrecreational water–showed that a reduction of 0.7–3.7 log was needed for rotavirus, with the measured level offaecal load in Vibyåsen. The other pathogen of concern wasCampylobacter, where a 2.2 log reduction was needed forgroundwater recharge. The infectious dose of Salmonella is highand the excretion numbers of Giardia cysts and Cryptosporidiumoocysts low, resulting in no treatment requirements for theseorganisms under these circumstances. Pathogen input fromcontaminated food via the kitchen sink had a minor effect onthe microbiological quality of the greywater. Studies on virusoccurrence in greywater as well as validation of the faecalload of greywater at another site would give valuable input forfuture QMRAs.</p><p>Greywater treatment efficiency studies, especially on virusremoval, are scarce and more investigations are warranted.Active sludge may not be a suitable technique for greywater dueto the low carbon content in this flow. Chemical precipitationhas the advantage of removing phosphorus as well as virusesefficiently and it is suggested as one possible method fortreating greywater. Otherwise the most common practice forgreywater treatment in Sweden is soil infiltration. However, itis suggested that the recommendations for wastewaterinfiltration also be observed for greywater, despite the lowfaecal load, due to the simulated results on virus reductionneeded.</p><p><b>Key words:</b>greywater, greywater reuse, greywatertreatment, microbial risk assessment, groundwater recharge,irrigation, recreational water, faecal contamination, indicatorbacteria, index organisms, faecal sterols, bacteriophages,enteric pathogens, rotavirus, Salmonella, Campylobacter,Giardia, Cryptosporidium, Legionella</p>
4

Evaluation of microbial health risks associated with the reuse of source-separated humna urine

Höglund, Caroline January 2001 (has links)
Human excreta contain plant nutrients and have the potentialto be used as a fertiliser in agriculture. Urine contributesthe major proportion of the nutrients (N, P and K) in domesticwastewater whereas faeces contribute a smaller amount andinvolves greater health risks if reused due to the possiblepresence of enteric pathogens. Human urine does not generallycontain pathogens that can be transmitted through theenvironment. Source-separation of urine and faeces is possible by usingurine-separating (or urine-diverting) toilets, available assimple dry toilets or porcelain flush toilets with dividedbowls. The risk for transmission of disease when handling andreusing the urine is largely dependent on thecross-contamination by faeces. In this research, the presenceof human faeces in urine samples was successfully determined byanalysing for faecal sterols. Cross-contamination was evidentin 22% of the samples from urine collection tanks, and in thesequantified to an average (± SD) of 9.1 ± 5.6 mgfaeces per litre urine. Testing for indicator bacteria wasshown to be an unsuitable method for determining faecalcontamination in human urine sinceE. colihad a rapid inactivation in the urine and faecalstreptococci were found to grow within the system. The fate of any enteric pathogens present in urine iscrucial for the risk for transmission of infectious diseases.Gram-negative bacteria (e.g.SalmonellaandE. coli) were rapidly inactivated (time for 90%reduction, T90&lt;5 days) in source-separated urine at itsnatural pH-value of 9. Gram-positive faecal streptococci weremore persistent with a T90of approximately 30 days. Clostridia sporenumbers were not reduced at all during 80 days. Similarly,rhesusrotavirus andSalmonella typhimuriumphage 28B were not inactivated inurine at low temperature (5°C), whereas at 20°C theirT90-values were 35 and 71 days, respectively.Cryptosporidiumoocysts were less persistent with a T90of 29 days at 4°C. Factors that affect thepersistence of microorganisms in source-separated human urineinclude temperature, pH, dilution and presence of ammonia. By using Quantitative Microbial Risk Assessment (QMRA), therisks for bacterial and protozoan infections related tohandling and reuse of urine were calculated to be&lt;10-3for all exposure routes independent of the urinestorage time and temperature evaluated. The risk for viralinfection was higher, calculated at 0.56 for accidentalingestion of 1 ml of unstored urine. If the urine was stored at20°C for 6 months the risk for viral infection was reducedto 5.4 × 10-4. By following recommendations for storage and reuse, whichare dependent on the type of crop to be fertilised, it ispossible to significantly decrease the risk for infections. Sofar, the level of risk that is acceptable is unknown. Theacceptable risk will be one of the main factors determining thefuture utilisation of source-separated human urine inagriculture. <b>Keywords:</b>urine-separation, urine, wastewater systems,wastewater reuse, recycling, enteric pathogens, faecal sterols,indicator bacteria, hygiene risks, microbial persistence,microbial risk assessment, QMRA, fertiliser, crop.
5

Evaluation of microbial health risks associated with the reuse of source-separated humna urine

Höglund, Caroline January 2001 (has links)
<p>Human excreta contain plant nutrients and have the potentialto be used as a fertiliser in agriculture. Urine contributesthe major proportion of the nutrients (N, P and K) in domesticwastewater whereas faeces contribute a smaller amount andinvolves greater health risks if reused due to the possiblepresence of enteric pathogens. Human urine does not generallycontain pathogens that can be transmitted through theenvironment.</p><p>Source-separation of urine and faeces is possible by usingurine-separating (or urine-diverting) toilets, available assimple dry toilets or porcelain flush toilets with dividedbowls. The risk for transmission of disease when handling andreusing the urine is largely dependent on thecross-contamination by faeces. In this research, the presenceof human faeces in urine samples was successfully determined byanalysing for faecal sterols. Cross-contamination was evidentin 22% of the samples from urine collection tanks, and in thesequantified to an average (± SD) of 9.1 ± 5.6 mgfaeces per litre urine. Testing for indicator bacteria wasshown to be an unsuitable method for determining faecalcontamination in human urine since<i>E. coli</i>had a rapid inactivation in the urine and faecalstreptococci were found to grow within the system.</p><p>The fate of any enteric pathogens present in urine iscrucial for the risk for transmission of infectious diseases.Gram-negative bacteria (e.g.<i>Salmonella</i>and<i>E. coli</i>) were rapidly inactivated (time for 90%reduction, T<sub>90</sub><5 days) in source-separated urine at itsnatural pH-value of 9. Gram-positive faecal streptococci weremore persistent with a T<sub>90</sub>of approximately 30 days. Clostridia sporenumbers were not reduced at all during 80 days. Similarly,<i>rhesus</i>rotavirus and<i>Salmonella typhimurium</i>phage 28B were not inactivated inurine at low temperature (5°C), whereas at 20°C theirT<sub>90</sub>-values were 35 and 71 days, respectively.<i>Cryptosporidium</i>oocysts were less persistent with a T<sub>90</sub>of 29 days at 4°C. Factors that affect thepersistence of microorganisms in source-separated human urineinclude temperature, pH, dilution and presence of ammonia.</p><p>By using Quantitative Microbial Risk Assessment (QMRA), therisks for bacterial and protozoan infections related tohandling and reuse of urine were calculated to be<10<sup>-3</sup>for all exposure routes independent of the urinestorage time and temperature evaluated. The risk for viralinfection was higher, calculated at 0.56 for accidentalingestion of 1 ml of unstored urine. If the urine was stored at20°C for 6 months the risk for viral infection was reducedto 5.4 × 10<sup>-4</sup>.</p><p>By following recommendations for storage and reuse, whichare dependent on the type of crop to be fertilised, it ispossible to significantly decrease the risk for infections. Sofar, the level of risk that is acceptable is unknown. Theacceptable risk will be one of the main factors determining thefuture utilisation of source-separated human urine inagriculture.</p><p><b>Keywords:</b>urine-separation, urine, wastewater systems,wastewater reuse, recycling, enteric pathogens, faecal sterols,indicator bacteria, hygiene risks, microbial persistence,microbial risk assessment, QMRA, fertiliser, crop.</p>
6

Hygiene Aspects of Greywater and Greywater Reuse

Ottosson, Jakob January 2003 (has links)
Greywater is domestic household wastewater without inputfrom the toilet, i.e. wastewater from sinks, the shower,washing machine and dishwasher in a home. Source separation ofgreywater can be a strategy to enhance recirculation of plantnutrients and/or improve water use. The risk for transmissionof disease when reusing greywater is largely dependent on thecross-contamination by faeces. High levels of faecalindicators, mainly thermotolerant coliform bacteria, have beenreported in greywater, indicating substantial faecal pollution.However, growth of indicator bacteria within the system leadsto an overestimation of thefaecal input and thus the hygienerisk. The faecal input of the greywater in Vibyåsen,Sollentuna, North of Stockholm, was estimated to be 0.04 ±0.02 g faeces person-1 day-1 from the quantification of thefaecal sterol coprostanol, compared to 65 g, 5.2 g and 0.22 gp-1 d-1 using E. coli, enterococci and cholesterolrespectively. Prevalence of pathogens in the population and the faecalload based on coprostanol concentrations were used to form thebasis of a screening-level quantitative microbial riskassessment (QMRA) that was undertaken for rotavirus, Salmonellatyphimurium, Campylobacter jejuni, Giardia intestinalis andCryptosporidium parvum, looking at the treatment required to bebelow an acceptable level of risk (10-3) for reuse or dischargeof the greywater. The different exposure scenarios simulated–groundwater recharge, direct contact, irrigation andrecreational water–showed that a reduction of 0.7–3.7 log was needed for rotavirus, with the measured level offaecal load in Vibyåsen. The other pathogen of concern wasCampylobacter, where a 2.2 log reduction was needed forgroundwater recharge. The infectious dose of Salmonella is highand the excretion numbers of Giardia cysts and Cryptosporidiumoocysts low, resulting in no treatment requirements for theseorganisms under these circumstances. Pathogen input fromcontaminated food via the kitchen sink had a minor effect onthe microbiological quality of the greywater. Studies on virusoccurrence in greywater as well as validation of the faecalload of greywater at another site would give valuable input forfuture QMRAs. Greywater treatment efficiency studies, especially on virusremoval, are scarce and more investigations are warranted.Active sludge may not be a suitable technique for greywater dueto the low carbon content in this flow. Chemical precipitationhas the advantage of removing phosphorus as well as virusesefficiently and it is suggested as one possible method fortreating greywater. Otherwise the most common practice forgreywater treatment in Sweden is soil infiltration. However, itis suggested that the recommendations for wastewaterinfiltration also be observed for greywater, despite the lowfaecal load, due to the simulated results on virus reductionneeded. <b>Key words:</b>greywater, greywater reuse, greywatertreatment, microbial risk assessment, groundwater recharge,irrigation, recreational water, faecal contamination, indicatorbacteria, index organisms, faecal sterols, bacteriophages,enteric pathogens, rotavirus, Salmonella, Campylobacter,Giardia, Cryptosporidium, Legionella / NR 20140805

Page generated in 0.0653 seconds