Spelling suggestions: "subject:"pairing"" "subject:"airing""
1 |
Online optimisation of continuous cutter path representationWong, Yew Kee January 1997 (has links)
No description available.
|
2 |
Structural & Internal Acoustic Response of Cylinders with Applications to Rocket Payload FairingsNiezrecki, Christopher 30 June 1999 (has links)
Future launch vehicle payload fairings will be manufactured from advanced lightweight composite materials. The loss of distributed mass causes a significant increase in the internal acoustic environment, causing a severe threat to the payload. Using piezoelectric actuators to control the fairing vibration and the internal acoustic environment has been proposed. The control authority of these actuators for this problem has not yet been determined. To help determine the acoustic control authority of piezoelectric actuators mounted on a rocket fairing, the internal acoustic response created by the actuators needs to be determined. In this work the internal acoustic response of a closed simply-supported (SS) cylinder actuated by piezoelectric (PZT) actuators is presented. A research-grade SS cylinder is created and the modal properties are analyzed experimentally. The experimental modal properties are compared to finite element analysis (FEA) and to results predicted by Love shell theory. The experimental results indicate that the created cylinder has dynamic properties that are similar to the analytical and FEA results. The formulation for the structural response uses an impedance model to predict transverse vibration of the cylinder excited by PZT actuators. The model is also shown to be valid. To obtain the internal acoustic response of the cylinder a boundary element analysis using the Kirchoff-Helmholtz integral is used. The motion of the structure is assumed to be uncoupled with the internal acoustics, and so the structural-acoustic interaction is not considered in this analysis. An analytical solution to the internal acoustic response within the cylinder is derived for a single mode structural vibration. The numerical and analytical models are shown to be in agreement. The numerical model is also verified experimentally by measuring the acoustic field within the cylinder. The experimental results and the results predicted by the acoustic model are in agreement. A measure of the acoustic loss factor for the aluminum cylinder is also determined experimentally.
The validated model is used to extrapolate results for a SS cylinder that emulates a Minotaur payload fairing. The internal cylinder acoustic levels are investigated for PZT actuation between 35 and 400 Hz. It is found that changes in cylinder parameters (stiffness and material density) do not have a large effect on the magnitude of the structural response. Likewise the interior acoustic response is not greatly affected by changes to the cylinder parameters. As the applied voltage increases linearly, the internal sound pressure level (SPL) varies logarithmically. This behavior is a limiting factor in using a PZT actuator to generate high internal SPLs. Significant reductions in the structural response due to increased damping do not equate to similar reductions in the acoustic SPLs for the cylinder. The sound levels at the acoustic resonant frequencies are essentially unaffected by the significant increase in structural damping while the acoustic levels at the structural resonant frequencies are mildly reduced. The interior acoustic response of the cylinder is dominated by the acoustic modes and therefore significant reductions in the overall interior acoustic levels will not be achieved if only the structural resonances are controlled.
The model indicates that the maximum acoustic levels generated by the baseline PZT actuator are sufficient at the higher frequency range but are not commensurate with the levels found in a typical fairing in the lower frequency range (below ~200 Hz). Since the baseline actuator's applied voltage can not be increased, additional actuators are required in order to increase the response of the cylinder at some of the lower frequencies. The baseline actuator is clearly better at generating sound within the cylinder as the frequency increases. This implies that more actuators will be required to control the lower frequency modes than the higher frequency modes. As the actuation frequency is reduced, the number of actuators required to generate acoustic levels commensurate to that found in the fairing increases to impractical values. Below approximately 100 Hz, the current demands reach levels that are extremely difficult to achieve with a practical system. The results of this work imply that PZT actuators do not have the authority to control the payload fairing internal acoustics below ~100 Hz. / Ph. D.
|
3 |
Electromagnetic Environment In Payload Fairing CavitiesTrout, Dawn 01 January 2012 (has links)
An accurate determination of a spacecraft’s radio frequency electromagnetic field environment during launch and flight is critical for mission success. Typical fairing structures consist of a parabolic nose and a cylindrical core with diameters of 1 to 5 meters resulting in electrically large dimensions for typical operational sources at S, C and X band where the free space wavelength varies from 0.15 m to 0.03 m. These electrically large size and complex structures at present have internal fairing electromagnetic field evaluation that is limited to general approximation methods and some test data. Though many of today’s computational electromagnetic tools can model increasingly complex and large structures, they still have many limitations when used for field determination in electrically large cavities. In this dissertation, a series of test anchored, full wave computational electromagnetic models along with a novel application of the equivalent material property technique are presented to address the electrical, geometrical, and boundary constraints for electromagnetic field determination in composite fairing cavity structures and fairings with acoustic blanketing layers. Both external and internal excitations for these fairing configurations are examined for continuous wave and transient sources. A novel modification of the Nicholson Ross Weir technique is successfully applied to both blanketed aluminum and composite fairing structures and a significant improvement in computational efficiency over the multilayered model approach is obtained. The advantages and disadvantages of using commercially available tools by incorporating Multilevel Fast Multipole Method (MLFMM) and higher order method of moments (HO MoM) to extend their application of MoM to electrically large objects is examined for each continuous wave transmission case. The results obtained with these models are ii compared with those obtained using approximation techniques based on the Q factor, commonly utilized in the industry, and a significant improvement is seen in a prediction of the fields in these large cavity structures. A statistical distribution of data points within the fairing cavity is examined to study the nature of the fairing cavity field distribution and the effect of the presence of a spacecraft load on these fields is also discussed. In addition, a model with external application of Green’s function is examined to address the shielding effectiveness of honeycomb panels in a fairing cavity. Accurate data for lightning induced effects within a fairing structure is not available and hence in this dissertation, a transmission line matrix method model is used to examine induced lightning effects inside a graphite composite fairing structure. The simulated results are compared with test data and show good agreement.
|
4 |
Control of Sound Transmission with Active-Passive TilesGoldstein, Andre L. 31 August 2006 (has links)
Nowadays, numerous applications of active sound transmission control require lightweight partitions with high transmission loss over a broad frequency range and simple control strategies. In this work an active-passive sound transmission control approach is investigated that potentially addresses these requirements. The approach involves the use of lightweight stiff panels, or tiles, attached to a radiating base structure through active-passive soft mounts and covering the structure surface. The resulting double-partition configuration was shown to have good high frequency passive isolation, but poor low frequency transmission loss due to the coupling of the tiles to the base vibration through the air gap. The low frequency transmission loss performance of the partition was increased by using the active mounts to cancel the local volume velocity of the tiles. The use of a decentralized control approach with independent single channel controllers for each tile facilitates the implementation of a multiple tile system in a large scale application.
A coupled structural-acoustic model based on an impedance mobility matrix approach was formulated to investigate the potential performance of active-passive tile approach in controlling sound transmission through plates. The model was initially applied to investigate the sound transmission characteristics of a double-panel partition consisting of a single tile-plate configuration and then extended to model a partition consisting of multiple-tiles mounted on a plate. The system was shown to have significant passive performance above the mass-spring-mass resonance of the double-panel system. Both feedback and feedforward control approaches were simulated and shown to significantly increase the transmission loss of the partition by applying control forces in parallel with the mounts to reduce the tile normal velocity. A correspondent reduction in sound radiated power was obtained over a broad frequency range limited by the tile stiffness.
The experimental implementation of the active-passive tile approach for the control of sound transmission through plates was also performed. Two main experimental setups were utilized in the investigations, the first consisting of a single tile mounted on a clamped plate and the other consisting of four active tiles mounted of a simply supported plate. Tile prototypes were implemented with lightweight stiff panels and integrated active-passive mounts were implemented with piezoelectric Thunder actuators. Both analog feedback and digital feedforward control schemes where designed and implemented with the objective of reducing the normal velocity of the tiles. Experimental results have demonstrated significant broad frequency range reductions in the sound transmission through the partition by active attenuation of the tile velocity. In addition, the experiments have shown that decentralized control can be successfully implemented for multiple tiles systems. The active-passive sound transmission control characteristics of the systems experimentally studied were observed to be in accordance with the analytical results. / Ph. D.
|
5 |
Control of sound transmission into payload fairings using distributed vibration absorbers and Helmholtz resonatorsEstève, Simon J. 28 May 2004 (has links)
A new passive treatment to reduce sound transmission into payload fairing at low frequency is investigated. This new solution is composed of optimally damped vibration absorbers (DVA) and optimally damped Helmholtz resonators (HR). A fully coupled structural-acoustic model of a composite cylinder excited by an external plane wave is developed as a first approximation of the system. A modal expansion method is used to describe the behavior of the cylindrical shell and the acoustic cavity; the noise reduction devices are modeled as surface impedances. All the elements are then fully coupled using an impedance matching method. This model is then refined using the digitized mode shapes and natural frequencies obtained from a fairing finite element model.
For both models, the noise transmission mechanisms are highlighted and the noise reduction mechanisms are explained. Procedures to design the structural and acoustic absorbers based on single degree of freedom system are modified for the multi-mode framework. The optimization of the overall treatment parameters namely location, tuning frequency, and damping of each device is also investigated using genetic algorithm. Noise reduction of up to 9dB from 50Hz to 160Hz using 4% of the cylinder mass for the DVA and 5% of the cavity volume for the HR can be achieved. The robustness of the treatment performance to changes in the excitation, system and devices characteristics is also addressed.
The model is validated by experiments done outdoors on a 10-foot long, 8-foot diameter composite cylinder. The excitation level reached 136dB at the cylinder surface comparable to real launch acoustic environment. With HRs representing 2% of the cylinder volume, the noise transmission from 50Hz to160Hz is reduced by 3dB and the addition of DVAs representing 6.5% of the cylinder mass enhances this performance to 4.3dB. Using the fairing model, a HR+DVA treatment is designed under flight constraints and is implemented in a real Boeing fairing. The treatment is composed of 220 HRs and 60 DVAs representing 1.1% and 2.5% of the fairing volume and mass respectively. Noise reduction of 3.2dB from 30Hz to 90Hz is obtained experimentally.
As a natural extension, a new type of adaptive Helmholtz resonator is developed. A tuning law commonly used to track single frequency disturbance is newly applied to track modes driven by broadband excitation. This tuning law only requires information local to the resonator simplifying greatly its implementation in a fairing where it can adapt to shifts in acoustic natural frequencies caused by varying payload fills. A time domain model of adaptive resonators coupled to a cylinder is developed. Simulations demonstrate that multiple adaptive HRs lead to broadband noise reductions similar to the ones obtained with genetic optimization. Experiments conducted on the cylinder confirmed the ability of adaptive HRs to converge to a near optimal solution in a frequency band including multiple resonances. / Ph. D.
|
6 |
Adaptive Collocated Feedback for Noise Absorption in Acoustic EnclosuresCreasy, Miles Austin 29 November 2006 (has links)
This thesis focuses on adaptive feedback control for low frequency acoustic energy absorption in acoustic enclosures. The specific application chosen for this work is the reduction of high interior sound pressure levels (SPL) experienced during launch within launch vehicle payload fairings. Two acoustic enclosures are used in the research: the first being a symmetric cylindrical duct and the other being a full scale model of a payload fairing. The symmetric cylindrical duct is used to validate the ability of the adaptive controller to compensate for large changes in the interior acoustical properties. The payload fairing is used to validate that feedback control, for a large geometry, does absorb acoustic energy.
The feedback controller studied in this work is positive position feedback (PPF) used in conjunction with high and low pass Butterworth filters. An algorithm is formed from control experiments for setting the filter parameters of the PPF and Butterworth filters from non-adaptive control simulations and tests of the duct and payload fairing. This non-adaptive control shows internal SPL reductions of 2.2 dB in the cylindrical duct for the frequency range from 100 to 500 Hz and internal SPL reductions of 4.2 dB in the full scale fairing model for the frequency range from 50 to 250 Hz.
The experimentally formed control algorithm is then used as the basis for an adaptive controller that uses the collocated feedback signal to actively tune the control parameters. The cylindrical duct enclosure with a movable end cap is used to test the adaptation properties of the controller. The movable end cap allows the frequencies of the acoustic modes to vary by more than 20 percent. Experiments show that a 10 percent change in the frequencies of the acoustic modes cause the closed-loop system to go unstable with a non-adaptive controller. The closed-loop system with the adaptive controller maintains stability and reduces the SPL throughout the 20 percent change of the acoustic modes' frequencies with a 2.3 dB SPL reduction before change and a 1.7 dB SPL reduction after the 20 percent change. / Master of Science
|
7 |
Modal and Impedance Modeling of a Conical Bore for Control ApplicationsFarinholt, Kevin 06 November 2001 (has links)
The research presented in this thesis focuses on the use of feedback control for lowering acoustic levels within launch vehicle payload fairings. Due to the predominance of conical geometries within payload fairings, our work focused on the analytical modeling of conical shrouds using modal and impedance based models. Incorporating an actuating boundary condition within a sealed enclosure, resonant frequencies and mode shapes were developed as functions of geometric and mechanical parameters of the enclosure and the actuator. Using a set of modal approximations, a set of matrix equations have been developed describing the homogeneous form of the wave equation. Extending to impedance techniques, the resonant frequencies of the structure were again calculated, providing analytical validation of each model. Expanding this impedance model to first order form, the acoustic model has been coupled with actuator dynamics yielding a complete model of the system relating pressure to control voltage.
Using this coupled state-space model, control design using Linear Quadratic Regulator and Positive Position Feedback techniques has also been presented. Using the properties of LQR analysis, an analytical study into the degree of coupling between actuator and cavity as a function of actuator resonance has been conducted. Constructing an experimetnal test-bed for model validation and control implementation, a small sealed enclosure was built and outfitted with sensors. Placing a control speaker at the small end of the cone the large opening was sealed with a rigid termination. An internal acoustic source was used to excite the system and pressure measurements were captured using an array of microphones located throughout the conic section. Using the parameters of this experimental test-bed, comparisons were made between LQR and PPF control designs. Using an impulse disturbance to excite the system, LQR simulations predicted reductions of 53.2% below those of the PPF design, while the control voltages corresponding to these reductions were 43.8% higher for LQR control.
Actual application of these control designs showed that the ability to manually set PPF gains made this design technique much more convenient for actual implementation. Yielding overall attenuation of 38% with control voltages below 200 mV, single-channel low authority control was seen to be an effective solution for low frequency noise reduction. Control was then expanded to a larger geometry representative of Minotaur fairings. Designing strictly from experimental results, overall reductions of 38.5% were observed. Requiring slightly larger control voltages than those of the conical cavity, peak voltages were still found to be less than 306 mV. Extrapolating to higher excitation levels of 140 dB, overall power requirements for 38.5% pressure reductions were estimated to be less than 16 W. / Master of Science
|
8 |
Design methodology for wing trailing edge device mechanismsMartins Pires, Rui Miguel 04 1900 (has links)
Over the last few decades the design of high lift devices has become a very
important part of the total aircraft design process. Reviews of the design process
are performed on a regular basis, with the intent to improve and optimize the
design process.
This thesis describes a new and innovative methodology for the design and
evaluation of mechanisms for Trailing Edge High-Lift devices. The initial research
reviewed existing High-Lift device design methodologies and current flap systems
used on existing commercial transport aircraft. This revealed the need for a design
methodology that could improve the design process of High-Lift devices, moving
away from the conventional "trial and error" design approach, and cover a wider
range of design attributes. This new methodology includes the use of the
innovative design tool called SYNAMEC. This is a state-of-the-art engineering
design tool for the synthesis and optimizations of aeronautical mechanisms. The
new multidisciplinary design methodology also looks into issues not usually
associated with the initial stages of the design process, such as Maintainability,
Reliability, Weight and Cost.
The availability of the SYNAMEC design tool and its ability to perform Synthesis
and Optimization of mechanisms led to it being used as an important module in
the development of the new design methodology. The SYNAMEC tool allows
designers to assess more mechanisms in a given time than the traditional design
methodologies.
A validation of the new methodology was performed and showed that creditable
results were achieved.
A case study was performed on the ATRA
-
Advance Transport Regional Aircraft,
a Cranfield University design project, to apply the design methodology and select
from within a group of viable solutions the most suitable type of mechanism for the
Variable Camber Wing concept initially defined for the aircraft. The results show
that the most appropriate mechanism type for the ATRA Variable Camber Wing is
the Link /Track Mechanism. It also demonstrated how a wide range of design
attributes can now be considered at a much earlier stage of the design.
|
9 |
Design methodology for wing trailing edge device mechanismsMartins Pires, Rui Miguel January 2007 (has links)
Over the last few decades the design of high lift devices has become a very important part of the total aircraft design process. Reviews of the design process are performed on a regular basis, with the intent to improve and optimize the design process. This thesis describes a new and innovative methodology for the design and evaluation of mechanisms for Trailing Edge High-Lift devices. The initial research reviewed existing High-Lift device design methodologies and current flap systems used on existing commercial transport aircraft. This revealed the need for a design methodology that could improve the design process of High-Lift devices, moving away from the conventional "trial and error" design approach, and cover a wider range of design attributes. This new methodology includes the use of the innovative design tool called SYNAMEC. This is a state-of-the-art engineering design tool for the synthesis and optimizations of aeronautical mechanisms. The new multidisciplinary design methodology also looks into issues not usually associated with the initial stages of the design process, such as Maintainability, Reliability, Weight and Cost. The availability of the SYNAMEC design tool and its ability to perform Synthesis and Optimization of mechanisms led to it being used as an important module in the development of the new design methodology. The SYNAMEC tool allows designers to assess more mechanisms in a given time than the traditional design methodologies. A validation of the new methodology was performed and showed that creditable results were achieved. A case study was performed on the ATRA - Advance Transport Regional Aircraft, a Cranfield University design project, to apply the design methodology and select from within a group of viable solutions the most suitable type of mechanism for the Variable Camber Wing concept initially defined for the aircraft. The results show that the most appropriate mechanism type for the ATRA Variable Camber Wing is the Link /Track Mechanism. It also demonstrated how a wide range of design attributes can now be considered at a much earlier stage of the design.
|
10 |
Automated generic parameterized design of aircraft fairing and windshieldSingh, Aakash Narender, Govindharajan, Vijay January 2012 (has links)
The process of design is time consuming and result oriented. There is always a better scope for any design that reduces the time with better precision. Considering this as a major factor during design process, two of the vital parts of the aircraft conceptual design are taken into account where a lot of time can be saved. Major components considered in this work are fairings for the lift generating surfaces and cockpit windshield. In this work the major inference is to reduce the time spent on the initial conceptual design. The two components designed in this work are fairings and windshield. The fairing design in this work provides a flexible template which can be used for various fuselage and wing configurations for transport aircrafts. The windshield is classified into two types in this work, flat and blend windshield. Both the type of windshields can be implemented on appropriate fuselage. Both the components are designed to be implemented in single pilot as well as double pilot aircrafts. They also have parameters which can be modified according to the user requirement. The changes in the parameters provide the change in shape, size and volume of the components. The software used for this is CATIA V5. The process is carried out using two automation methods available in CATIA namely Power-Copy and Knowledge pattern. A comparison between the effectiveness of two automation methods used in this work is performed.
|
Page generated in 0.0486 seconds