• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Automated Multidisciplinary Optimizations of Conceptual Rocket Fairings

Smart, Ronald S. 13 July 2011 (has links) (PDF)
The purpose of this research is to develop and architect a preliminary multidisciplinary design optimization (MDO) tool that creates multiple types of generalized rocket fairing models. These models are sized relative to input geometric models and are analyzed and optimized, taking into account the primary objectives, namely the structural, thermal, and aerodynamic aspects of standard rocket flights. A variety of standard nose cone shapes is used as optimization proof of concept examples, being sized and compared to determine optimal choices based on the input specifications, such as the rocket body geometry and the specified trajectory paths. Any input models can be optimized to their respective best nose cone style or optimized to each of the cone styles individually, depending on the desired constraints. Two proof of concept example rocket model studies are included with varying sizes and speeds. Both have been optimized using the processes described to provide delineative instances into how results are improved and time saved. This is done by optimizing shape and thickness of the fairings while ascertaining if the remaining length downstream on the designated rocket model remains within specified stress and temperature ranges. The first optimized example exhibits a region of high stress downstream on the rocket body model that champions how these tools can be used to catch weaknesses and improve the overall integrity of a rocket design. The second example demonstrates how more established rocket designs can decrease their weight and drag through optimization of the fairing design.
12

Aerodynamic Design Optimization of a Locomotive Nose Fairing for Reducing Drag

Stucki, Chad Lamar 01 April 2019 (has links)
Rising fuel cost has motivated increased fuel efficiency for freight trains. At cruising speed,the largest contributing factor to the fuel consumption is aerodynamic drag. As a result of stagnationand flow separation on and around lead and trailing cars, the first and last railcars experiencegreater drag than intermediate cars. Accordingly, this work focused on reducing drag on lead locomotivesby designing and optimizing an add-on nose fairing that is feasible for industrial operation.The fairing shape design was performed via computational fluid dynamic (CFD) software.The simulations consisted of two in-line freight locomotives, a stretch of rails on a raised subgrade,a computational domain, and a unique fairing geometry that was attached to the lead locomotive ineach non-baseline case. Relative motion was simulated by fixing the train and translating the rails,subgrade, and ground at a constant velocity. An equivalent uniform inlet velocity was applied atzero degree yaw to simulate relative motion between the air and the train.Five fairing families-Fairing Families A-E (FFA-FFE)-are presented in this thesis.Multidimensional regressions are created for each family to approximate drag as a function ofthe design variables. Thus, railroad companies may choose an alternative fairing if the recommendedfairing does not meet their needs and still have a performance estimate. The regression forFFE is used as a surrogate model in a surrogate based optimization. Results from a wind tunneltest and from CFD are reported on an FFE geometry to validate the CFD model. The wind tunneltest predicts a nominal drag reduction of 16%, and the CFD model predicts a reduction of 17%.A qualitative analysis is performed on the simulations containing the baseline locomotive, the optimalfairings from FFA-FFC, and the hybrid child and parent geometries from FFA & FFC. Theanalysis reveals that optimal performance is achieved for a narrow geometry from FFC becausesuction behind the fairing is greatly reduced. Similarly, the analysis reveals that concave geometriesboost the flow over the top leading edge of the locomotive, thus eliminating a vortex upstreamof the windshields. As a result, concave geometries yield greater reductions in drag.The design variable definitions for each family were strategically selected to improve manufacturability,operational safety, and aerodynamic performance relative to the previous families.As a result, the optimal geometry from FFE is believed to most completely satisfy the constraintsof the design problem and should be given the most consideration for application in the railroadindustry. The CFD solution for this particular geometry suggests a nominal drag reduction of 17%on the lead locomotive in an industrial freight train.
13

Patient-Specific 3D Vascular Reconstruction and Computational Assessment of Biomechanics – an Application to Abdominal Aortic Aneurysm

Raut, Samarth Shankar 01 August 2012 (has links)
The current clinical management of abdominal aortic aneurysm (AAA) disease is based on measuring the aneurysm maximum diameter to decide when timely intervention can be recommended to a patient. However, other parameters may also play a role in causing or predisposing the AAA to either an early or delayed rupture relative to its size. Therefore, patient-specific assessment of rupture risk based on physical principles such as individualized biomechanics can be conducive to the development of a vascular tool with translational potential. To that end, the present doctoral research materialized into a framework for image based patient-specific vascular biomechanics assessment. A robust generalized approach is described herein for image-based volume mesh generation of complex multidomain bifurcated vascular trees with the capability of incorporating regionally varying wall thickness. The developed framework is assessed for geometrical accuracy, mesh quality, and optimal computational performance. The relative influence of the shape and the constitutive wall material property on the AAA wall mechanics was explored. This study resulted in statistically insignificant differences in peak wall stress among 28 AAA geometries of similar maximum diameter (in the 50 – 55 mm range) when modeled with five different hyperelastic isotropic constitutive equations. Relative influence of regionally varying vs. uniform wall thickness distribution on the AAA wall mechanics was also assessed to find statistically significant differences in spatial maxima of wall stresses, strains, and strain energy densities among the same 28 AAA geometries modeled with patient-specific non-uniform wall thickness and two uniform wall thickness assumptions. Finally, the feasibility of estimating in vivo wall strains from individual clinical images was evaluated. Such study resulted in a framework for in vivo 3D strain distributions based on ECG gated, unenhanced, dynamic magnetic resonance images acquired for 20 phases in the cardiac cycle. Future efforts should be focused on further development of the framework for in vivo estimation of regionally varying hyperelastic, anisotropic constitutive material models with active mechanics components and the integration of such framework with an open source finite element solver with the goal of increasing the translational potential of these tools for individualized prediction of AAA rupture risk in the clinic.
14

Low speed wind tunnel testing and data correction methods for aircraft models in ground effect

Broughton, Benjamin Albert 02 May 2013 (has links)
In this thesis, techniques for testing aircraft models in ground effect in a low speed wind tunnel are investigated. Although these types of tests have been done before, the current study is unique in that forces are measured with an overhead balance instead of an internal balance. This has the advantage that the types of models that are difficult to mount on a sting with an internal balance, can often be mounted with a strut protruding from the top of the model. Positioning a sting-mounted model close to the ground at a high angle-of-attack is also usually difficult if not impossible. Finally, drag measurements are often more accurate when measured with an overhead balance rather than with an internal sting-type balance. The disadvantages associated with this method of testing are identified and solutions suggested. These include accurate moment transfers and correcting for support tares and interference. The thesis also investigates general procedures associated with ground effect testing such as proper boundary corrections and the necessity of a rolling floor. A simplified preliminary test series was performed in order to identify shortcomings in the existing equipment and procedures. This series is explained in Chapter 2. Chapter 4 and 5 describe changes made to the existing equipment following this test series. These include a novel telescopic fairing to shroud the mounting strut and an internal pitching mechanism. The correction techniques and general theory are summarised in Chapter 3. The author concludes in Chapter 6 that with the application of the techniques described in this thesis, the test engineer should be able to obtain accurate and reliable data from most aircraft configurations. Additional suggestions for testing models in ground effect are also given in this chapter. Finally, a few shortcomings that still need to be investigated are mentioned at the end of Chapter 6. AFRIKAANS : Hierdie verhandeling ondersoek tegnieke om vliegtuigmodelle in grondeffek in 'n laespoed-windtonnel te toets. Alhoewel hierdie tipe van toetse al voorheen gedoen is, is die huidige studie uniek deurdat 'n oorhoofse balans eerder as 'n interne balans gebruik word. Die voordeel hiervan is dat modelle wat moeilik op 'n naald- of "sting"-balans monteer kan word, baie keer makliker monteer kan word met 'n stang wat deur die bokant van die model steek. Posisioneering van 'n naald-gemonteerde model naby aan die vloer van die tonnel by hoe invalshoeke is gewoonlik ook baie moeilik indien nie onmoontlik nie. Laastens is sleurkrag-metings wat met 'n oorhoofse balans gemeet is gewoonlik meer akkuraat as sleurkrag-metings wat met 'n interne naald-tipe balans gedoen is. Die nadele wat met hierdie toetsmetode geassosieer kan word, word geïdentifiseer en moontlike oplossing word voorgestel. Hierdie sluit die berekening in van akkurate moment-transformasies en monteersleureffekte en -steurings. Die verhandeling ondersoek ook algemene prosedures wat met grondeffektoetse geassosieer kan word, byvoorbeeld akkurate wandkorreksies en die nodigheid van die rolvloer. 'n Vereenvoudigde vooraf-toetsreeks was uitgevoer om moontlike tekortkominge in die bestaande toerusting en prosedures te identifiseer. Hierdie toetsreeks word in Hoofstuk 2 bespreek. Hoofstuk 4 en 5 verduidelik die veranderinge wat aan die bestaande toerusting gemaak is na aanleidng van hierdie toetsreeks. Hierdie veranderinge sluit 'n teleskopiese windskerm in om die monteerstang te isoleer van die wind, sowel as 'n interne heimeganisme om die invalshoek van die model te verstel. Die korreksieprosedures en algemene teorie word in Hoofstuk 3 opgesom. Die outeur se gevolgtekking in Hoofstuk 6 stel dat die toetsingenieur, met behulp van die gebruik van die tegnieke in hierdie verhandeling beskryf, in staat behoort te wees om betroubare metings te kan neem van meeste vliegtuigkonfigurasies. Verdere voorstelle vir die toets van modelle in grondeffek word ook in hierdie hoofstuk gemaak. Uiteindelik word 'n paar tekortkominge genoem wat moontlik in 'n toekomstige studie ondersoek kan word. / Dissertation (MEng)--University of Pretoria, 1999. / Mechanical and Aeronautical Engineering / unrestricted

Page generated in 0.0469 seconds