• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Petrologia do pl?ton Serra da Macambira, neoproteroz?ico da faixa serid?, prov?ncia Borborema (NE do Brasil)

Silva, Dalton Rosemberg Valentim da 28 July 2011 (has links)
Made available in DSpace on 2015-03-13T17:08:32Z (GMT). No. of bitstreams: 1 Dissertacao_DaltonSilva_2011.pdf: 1978800 bytes, checksum: 727fc9cfc5c0fc14b585548a0df8d538 (MD5) Previous issue date: 2011-07-28 / The final stage of Brasiliano/Pan-African orogeny in the Borborema Province is marked by widespread plutonic magmatism. The Serra da Macambira Pluton is an example of such plutonism in Serid? Belt, northeastern Borborema Province, and it is here subject of geological, petrographic, textural, geochemical and petrogenetic studies. The pluton is located in the State of Rio Grande do Norte, intrusive into Paleoproterozoic orthogneisses of the Caic? Complex and Neoproterozoic metassupracrustal rocks of the Serid? Group. Based upon intrusion/inclusion field relationships, mineralogy and texture, the rocks are classified as follows: intermediate enclaves (quartz-bearing monzonite and biotite-bearing tonalite), porphyritic monzogranite, equigranular syenogranite to monzogranite, and late granite and pegmatite dykes. Porphyritic granites and quartz-bearing monzonites represent mingling formed by the injection of an intermediate magma into a granitic one, which had already started crystallization. Both rocks are slightly older than the equigranular granites. Quartz-bearing monzonite has K-feldspar, plagioclase, biotite, hornblende and few quartz, meanwhile biotite-bearing tonalite are rich in quartz, poor in K-feldspar and hornblende is absent. Porphyritic and equigranular granites display mainly biotite and rare hornblende, myrmekite and pertitic textures, and zoned plagioclase pointing out to the relevance of fractional crystallization during magma evolution. Such granites have Rare Earth Elements (REE) pattern with negative Eu anomaly and light REE enrichment when compared to heavy REE. They are slight metaluminous to slight peraluminous, following a high-K calc-alkaline path. Petrogenesis started with 27,5% partial melting of Paleoproterozoic continental crust, generating an acid hydrous liquid, leaving a granulitic residue with orthopyroxene, plagioclase (An40-50), K-feldspar, quartz, epidote, magnetite, ilmenite, apatite and zircon. The liquid evolved mainly by fractional crystallization (10-25%) of plagioclase (An20), biotite and hornblende during the first stages of magmatic evolution. Granitic dykes are hololeucocratic with granophyric texture, indicating hypabissal crystallization and REE patterns similar to A-Type granites. Preserved igneous textures, absence or weak imprint of ductile tectonics, association with mafic to intermediate enclaves and alignment of samples according to monzonitic (high-K calcalkaline) series all indicate post-collisional to post-orogenic complexes as described in the literature. Such interpretation is supported by trace element discrimination diagrams that place the Serra da Macambira pluton as late-orogenic, probably reflecting the vanishing stages of the exhumation and collapse of the Brasiliano/Pan-African orogen. / O final da orog?nese Brasiliana/Pan-Africana na Prov?ncia Borborema, NE do Brasil, ? marcado por um volumoso plutonismo. O pl?ton Serra da Macambira (PSM) constitui um exemplo destes pl?tons, sendo aqui objeto de caracteriza??o geol?gica, petrogr?fica, textural, geoqu?mica e petrogen?tica. O PSM localiza-se no Estado do Rio Grande do Norte, sendo intrusivo em ortognaisses paleoproterozoicos (Complexo Caic?) e metassupracrustais neoproterozoicas (Grupo Serid?). As rochas que comp?em o pl?ton foram classificadas segundo suas rela??es de intrus?o/inclus?o, mineralogia e textura, na seguinte sequ?ncia relativa: enclaves intermedi?rios (quartzo monzonitos e biotita tonalitos); monzogranitos porfir?ticos; sienogranitos e monzogranitos equigranulares; diques gran?ticos e pegmat?ticos tardios. Granitos porfir?ticos e enclaves quartzo monzon?ticos representam mistura de magmas (mingling), formada pela inje??o de um magma intermedi?rio em um magma gran?tico j? em cristaliza??o. Ambos s?o ligeiramente precoces em rela??o ao granito equigranular. Os enclaves quartzo monzon?ticos apresentam microclina, plagiocl?sio, biotita, hornblenda e pouco quartzo, enquanto os biotia tonalitos s?o pobres em microclina, ricos em quartzo e n?o apresentam hornblenda. Os granitos porfir?tios e equigranulares portam biotita e raramente hornblenda, texturas mirmequ?tica e pert?tica, al?m de plagiocl?sios zonados que indicam a relev?ncia da cristaliza??o fracionada na sua evolu??o. Estes granitos apresentam caracter?sticas geoqu?micas similares, com anomalia negativa de Eu, enriquecimento em Elementos Terras Raras (ETR) leves e empobrecimento em ETR pesados, variam entre ligeiramente metaluminosos e ligeiramente peraluminosos e seguem a trajet?ria evolutiva c?lcio-alcalina de alto pot?ssio. Os processos petrogen?ticos tiveram in?cio com a fus?o parcial (27,5%) da crosta continental paleoproterozoica, gerando um l?quido ?cido hidratado, que incorporou H2O dos minerais existentes na fonte, deixando um res?duo granul?tico com ortopirox?nio, K-feldspato, plagiocl?sio (An40-50), quartzo, ep?doto, magnetita, ilmenita, apatita e zirc?o. O l?quido evoluiu com predomin?ncia do processo de cristaliza??o fracionada (10-25%), ocorrendo fracionamento de plagiocl?sio s?dico (An20), biotita e hornblenda nas fases iniciais de cristaliza??o. Diques ?cidos tardios apresentam textura granof?rica, caracterizando cristaliza??o e/ou coloca??o em condi??es hipabissais e padr?o de ETR similares aos de granitos Tipo-A. Texturas ?gneas bem preservadas, aus?ncia ou fraca atua??o de eventos tect?nicos, associa??o de enclaves intermedi?rios a m?ficos e alinhamento de amostras de acordo com s?ries de diferencia??o c?lcioalcalina de alto pot?ssio s?o encontradas em complexos magm?ticos p?s-colisionais a p?s-orog?nicos descritos na literatura. Esta interpreta??o est? em acordo com o comportamento das amostras em diagramas discriminantes de ambientes tect?nicos, posicionando o pl?ton em um contexto tardiorog?nico, eventualmente registrando os epis?dios finais de colapso da cadeia Brasiliana/Pan-Africana na Faixa Serid?.
2

Petrografia e litoqu?mica de rochas ferr?feras na regi?o central do Estado do Rio Grande do Norte (Dom?nio Rio Piranhas ? Serid?, NE da Prov?ncia Borborema)

Dantas, Alexandre Ranier 10 February 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-06-02T21:22:08Z No. of bitstreams: 1 AlexandreRanierDantas_DISSERT.pdf: 21894607 bytes, checksum: 088e721de60548df53dd8bf966dfdbb0 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-06-06T22:43:41Z (GMT) No. of bitstreams: 1 AlexandreRanierDantas_DISSERT.pdf: 21894607 bytes, checksum: 088e721de60548df53dd8bf966dfdbb0 (MD5) / Made available in DSpace on 2017-06-06T22:43:42Z (GMT). No. of bitstreams: 1 AlexandreRanierDantas_DISSERT.pdf: 21894607 bytes, checksum: 088e721de60548df53dd8bf966dfdbb0 (MD5) Previous issue date: 2017-02-10 / As ocorr?ncias de rochas ferr?feras na regi?o central do Rio Grande do Norte correspondem essencialmente a pequenos dep?sitos que aparentemente n?o apresentam potencial econ?mico. Em contrapartida, nos ?ltimos anos, pequenos jazimentos desse bem mineral tem sido explotados em algumas ?reas do Estado, especialmente os inseridos na regi?o do Dom?nio Rio Piranhas-Serid?. As forma??es ferr?feras ocorrem como intercala??es decim?tricas a algumas dezenas de metros em gnaisses da Forma??o Jucurutu, na base da sequ?ncia metavulcanossedimentar do Grupo Serid?. Menos frequentemente est?o associadas ?s rochas metam?ficas encaixadas em gnaisses do Complexo Caic?. Mapeamentos sistem?ticos na escala de 1:100.000 (folhas Lajes e Currais Novos) e levantamento de recursos minerais executados pela Companhia de Pesquisa de Recursos Minerais identificaram uma quantidade significativa de ocorr?ncias minerais (cadastro de 48 ocorr?ncias de rochas ferr?feras). Neste trabalho ser? realizado uma caracteriza??o petrogr?fica macro e microsc?pica de l?minas delgadas e se??es bipolidas e polidas de rochas ferr?feras, al?m da discuss?o dos dados de litoqu?mica, atrav?s da an?lise dos elementos maiores, assinatura dos elementos tra?os e terras raras para defini??o de prot?litos e ambiente tect?nico, quando for o caso, bem como o uso de MEV-EDS para estudo da composi??o qu?mica qualitativa de magnetitas e anfib?lios. Basicamente s?o rochas compostas de quartzo, ?xidos e hidr?xidos de ferro, anfib?lios (da s?rie cummingtonita-grunerita e actinolita-tremolita principalmente), de granula??o fina a m?dia e textura granonematobl?stica, por vezes com bandamento composicional. Normalmente apresentam teores de Fe2O3 variando entre 46 e 59% e de SiO2 entre 33 e 50%. Petrograficamente identificou-se dois grupos distintos: rochas ferr?feras granulares e rochas ferr?feras bandadas, encaixadas respectivamente em rochas correlatas ao embasamento gn?issico-migmat?tico (Complexo Caic?) e rochas supracrustais correlatas a Forma??o Jucurutu. A litoqu?mica permitiu concluir que os grupos de rochas ferr?feras granulares e bandadas apresentam comportamentos ora semelhantes, ora distintos. S?o rochas bimodais, compostas essencialmente de Si e Fe, com pequena propor??o de elementos tra?os e terras raras. Os par?metros qu?micos indicam ambiente dominantemente oxidante e grupos de rochas em posi??es intermedi?rias a mais pr?ximas das fontes hidrotermais oce?nicas. Quanto a natureza da forma??o das rochas ferr?feras, gr?ficos bin?rios com as rela??es entre Th, Zr e Ti permitiram identificar que s?o rochas puras quimicamente, com poucos n?veis de terr?genos. Enquanto diagramas bin?rios de SiO2 e Al2O3 e tern?rios de Al-Fe-Mn indicam que a totalidade das amostras de forma??es ferr?feras bandadas e granulares configuram sedimentos qu?mico-exalativos hidrotermais. Diagramas espec?ficos para identifica??o dos ambientes tect?nicos para forma??o das rochas ferr?feras granulares e bandadas estudadas na Faixa Serid? indicam principalmente cadeias oce?nicas localizadas nas imedia??es de margens continentais ativas transicionais a arco de ilha. O estudo das forma??es ferr?feras ? importante n?o apenas por concentrarem a maior fonte econ?mica de ferro nas rochas, como tamb?m por serem particularmente essenciais para o entendimento da evolu??o atmosf?rica e a composi??o qu?mica dos oceanos no per?odo de sua deposi??o. / Ferriferous rocks occurrences in Rio Grande do Norte central region essentially correspond to small deposits without apparent economic potential. In contrast, during the last years, small deposits of this mineral has been well exploited in some areas of the region, especially within the Rio Piranhas-Serid? Domain. The iron formations occur as decimeters to tens of meters layers intercalated with the Jucurutu Formation gneiss, at the base of Serid? Group metavolcano-sedimentary sequence. They may be associated, but less frequently, with metamafic rocks hosted in the gneiss and possible orthoderived metamorphic rocks from Caico Complex. Systematic mapping at the scales of 1:100,000 (Lajes and Currais Novos geological maps) and mineral resources survey carried out by the Companhia de Pesquisa de Recursos Minerais (CPRM) identified a significant amount of mineral occurrences (registered 48 occurrences of ferriferous rocks). In this work will be performed a macroscopic and microscopic petrographic characterization of thin sections, bipolid and polished sections of banded iron rocks, besides the discussion of lithochemistry data by analyzing the major elements, trace signing and rare earth elements to defining protolith and tectonic environment, where appropriated, as well as the use of MEV-EDS to study the qualitative chemical composition of magnetites and amphiboles. Basically, these rocks are composed of quartz, iron oxides and hydroxides, amphibole (cummingtonite-grunerite and actinolite-tremolite series), fine- to medium grained and granonematoblastic texture, sometimes with compositional banding. They are formed by Fe2O3 content ranging between 46 and 59% and SiO2 content ranging between 33 and 50%. Petrographically it were identified two distinct groups of ferriferous rocks: granular and bandeds. They occur interlayered respectively, into the migmatitic gneisses from Caic? Complex and in the supracrustal rocks correlated to the Jucurutu Formation. The lithochemistry permited to conclude that groups of granular and banded iron rocks sometimes present a similar behavior, sometimes not. The bimodal rocks are mainly composed of Si and Fe, with small proportion of trace and rare earths elements. The chemical parameters indicate dominantly oxidant environment and groups of rocks, since intermediate positions to closest the oceanic hydrothermal vents. As for the nature of the formation of the iron rocks, binary graphs with the relations between Th, Zr and Ti allowed to identify that they are chemically pure rocks, with few levels of terrigenous. While binary diagrams of SiO2 and Al2O3 and Al-Fe-Mn ternaries indicate that all samples of ferriferous banded and granular formations form hydrothermal chemical-exhalation sediments. Specific diagrams for the identification of the tectonic environments for the formation of granular iron rocks and banded iron rocks studied in the Faixa Serid? indicate mainly oceanic chains located next to active continental margins transitional to island arc. The iron formation study is important not only because it is the most economical source of iron in the rocks, but is particularly essential to understanding the atmospheric evolution and to the oceanic chemical composition in the period of their deposition.

Page generated in 0.0412 seconds