Spelling suggestions: "subject:"all detection"" "subject:"fall detection""
51 |
Détection de chute à l'aide d'une caméra de profondeurAlla, Jules-Ryane S. 04 1900 (has links)
Les chutes chez les personnes âgées représentent un problème important de santé publique.
Des études montrent qu’environ 30 % des personnes âgées de 65 ans et plus chutent chaque
année au Canada, entraînant des conséquences néfastes sur les plans individuel, familiale et
sociale. Face à une telle situation la vidéosurveillance est une solution efficace assurant la
sécurité de ces personnes.
À ce jour de nombreux systèmes d’assistance de services à la personne existent. Ces
dispositifs permettent à la personne âgée de vivre chez elle tout en assurant sa sécurité par le
port d'un capteur. Cependant le port du capteur en permanence par le sujet est peu confortable
et contraignant. C'est pourquoi la recherche s’est récemment intéressée à l’utilisation de
caméras au lieu de capteurs portables.
Le but de ce projet est de démontrer que l'utilisation d'un dispositif de vidéosurveillance peut
contribuer à la réduction de ce fléau. Dans ce document nous présentons une approche de
détection automatique de chute, basée sur une méthode de suivi 3D du sujet en utilisant une
caméra de profondeur (Kinect de Microsoft) positionnée à la verticale du sol. Ce suivi est
réalisé en utilisant la silhouette extraite en temps réel avec une approche robuste d’extraction
de fond 3D basée sur la variation de profondeur des pixels dans la scène. Cette méthode se
fondera sur une initialisation par une capture de la scène sans aucun sujet. Une fois la
silhouette extraite, les 10% de la silhouette correspondant à la zone la plus haute de la
silhouette (la plus proche de l'objectif de la Kinect) sera analysée en temps réel selon la vitesse
et la position de son centre de gravité. Ces critères permettront donc après analyse de détecter
la chute, puis d'émettre un signal (courrier ou texto) vers l'individu ou à l’autorité en charge
de la personne âgée. Cette méthode a été validée à l’aide de plusieurs vidéos de chutes
simulées par un cascadeur.
La position de la caméra et son information de profondeur réduisent de façon considérable les
risques de fausses alarmes de chute. Positionnée verticalement au sol, la caméra permet donc
d'analyser la scène et surtout de procéder au suivi de la silhouette sans occultation majeure, qui
conduisent dans certains cas à des fausses alertes. En outre les différents critères de détection
de chute, sont des caractéristiques fiables pour différencier la chute d'une personne, d'un
accroupissement ou d'une position assise. Néanmoins l'angle de vue de la caméra demeure un
problème car il n'est pas assez grand pour couvrir une surface conséquente. Une solution à ce
dilemme serait de fixer une lentille sur l'objectif de la Kinect permettant l’élargissement de la
zone surveillée. / Elderly falls are a major public health problem. Studies show that about 30% of people aged
65 and older fall each year in Canada, with negative consequences on individuals, their
families and our society. Faced with such a situation a video surveillance system is an
effective solution to ensure the safety of these people.
To this day many systems support services to the elderly. These devices allow the elderly to
live at home while ensuring their safety by wearing a sensor. However the sensor must be
worn at all times by the subject which is uncomfortable and restrictive. This is why research
has recently been interested in the use of cameras instead of wearable sensors.
The goal of this project is to demonstrate that the use of a video surveillance system can help
to reduce this problem. In this thesis we present an approach for automatic detection of falls
based on a method for tracking 3D subject using a depth camera (Kinect from Microsoft)
positioned vertically to the ground. This monitoring is done using the silhouette extracted in
real time with a robust approach for extracting 3D depth based on the depth variation of the
pixels in the scene. This method is based on an initial capture the scene without any body.
Once extracted, 10% of the silhouette corresponding to the uppermost region (nearest to the
Kinect) will be analyzed in real time depending on the speed and the position of its center of
gravity . These criteria will be analysed to detect the fall, then a signal (email or SMS) will be
transmitted to an individual or to the authority in charge of the elderly. This method was
validated using several videos of a stunt simulating falls.
The camera position and depth information reduce so considerably the risk of false alarms.
Positioned vertically above the ground, the camera makes it possible to analyze the scene
especially for tracking the silhouette without major occlusion, which in some cases lead to
false alarms. In addition, the various criteria for fall detection, are reliable characteristics for
distinguishing the fall of a person, from squatting or sitting. Nevertheless, the angle of the
camera remains a problem because it is not large enough to cover a large surface. A solution to
this dilemma would be to fix a lens on the objective of the Kinect for the enlargement of the
field of view and monitored area.
|
52 |
Détection de chute à l'aide d'une caméra de profondeurAlla, Jules-Ryane S. 04 1900 (has links)
Les chutes chez les personnes âgées représentent un problème important de santé publique.
Des études montrent qu’environ 30 % des personnes âgées de 65 ans et plus chutent chaque
année au Canada, entraînant des conséquences néfastes sur les plans individuel, familiale et
sociale. Face à une telle situation la vidéosurveillance est une solution efficace assurant la
sécurité de ces personnes.
À ce jour de nombreux systèmes d’assistance de services à la personne existent. Ces
dispositifs permettent à la personne âgée de vivre chez elle tout en assurant sa sécurité par le
port d'un capteur. Cependant le port du capteur en permanence par le sujet est peu confortable
et contraignant. C'est pourquoi la recherche s’est récemment intéressée à l’utilisation de
caméras au lieu de capteurs portables.
Le but de ce projet est de démontrer que l'utilisation d'un dispositif de vidéosurveillance peut
contribuer à la réduction de ce fléau. Dans ce document nous présentons une approche de
détection automatique de chute, basée sur une méthode de suivi 3D du sujet en utilisant une
caméra de profondeur (Kinect de Microsoft) positionnée à la verticale du sol. Ce suivi est
réalisé en utilisant la silhouette extraite en temps réel avec une approche robuste d’extraction
de fond 3D basée sur la variation de profondeur des pixels dans la scène. Cette méthode se
fondera sur une initialisation par une capture de la scène sans aucun sujet. Une fois la
silhouette extraite, les 10% de la silhouette correspondant à la zone la plus haute de la
silhouette (la plus proche de l'objectif de la Kinect) sera analysée en temps réel selon la vitesse
et la position de son centre de gravité. Ces critères permettront donc après analyse de détecter
la chute, puis d'émettre un signal (courrier ou texto) vers l'individu ou à l’autorité en charge
de la personne âgée. Cette méthode a été validée à l’aide de plusieurs vidéos de chutes
simulées par un cascadeur.
La position de la caméra et son information de profondeur réduisent de façon considérable les
risques de fausses alarmes de chute. Positionnée verticalement au sol, la caméra permet donc
d'analyser la scène et surtout de procéder au suivi de la silhouette sans occultation majeure, qui
conduisent dans certains cas à des fausses alertes. En outre les différents critères de détection
de chute, sont des caractéristiques fiables pour différencier la chute d'une personne, d'un
accroupissement ou d'une position assise. Néanmoins l'angle de vue de la caméra demeure un
problème car il n'est pas assez grand pour couvrir une surface conséquente. Une solution à ce
dilemme serait de fixer une lentille sur l'objectif de la Kinect permettant l’élargissement de la
zone surveillée. / Elderly falls are a major public health problem. Studies show that about 30% of people aged
65 and older fall each year in Canada, with negative consequences on individuals, their
families and our society. Faced with such a situation a video surveillance system is an
effective solution to ensure the safety of these people.
To this day many systems support services to the elderly. These devices allow the elderly to
live at home while ensuring their safety by wearing a sensor. However the sensor must be
worn at all times by the subject which is uncomfortable and restrictive. This is why research
has recently been interested in the use of cameras instead of wearable sensors.
The goal of this project is to demonstrate that the use of a video surveillance system can help
to reduce this problem. In this thesis we present an approach for automatic detection of falls
based on a method for tracking 3D subject using a depth camera (Kinect from Microsoft)
positioned vertically to the ground. This monitoring is done using the silhouette extracted in
real time with a robust approach for extracting 3D depth based on the depth variation of the
pixels in the scene. This method is based on an initial capture the scene without any body.
Once extracted, 10% of the silhouette corresponding to the uppermost region (nearest to the
Kinect) will be analyzed in real time depending on the speed and the position of its center of
gravity . These criteria will be analysed to detect the fall, then a signal (email or SMS) will be
transmitted to an individual or to the authority in charge of the elderly. This method was
validated using several videos of a stunt simulating falls.
The camera position and depth information reduce so considerably the risk of false alarms.
Positioned vertically above the ground, the camera makes it possible to analyze the scene
especially for tracking the silhouette without major occlusion, which in some cases lead to
false alarms. In addition, the various criteria for fall detection, are reliable characteristics for
distinguishing the fall of a person, from squatting or sitting. Nevertheless, the angle of the
camera remains a problem because it is not large enough to cover a large surface. A solution to
this dilemma would be to fix a lens on the objective of the Kinect for the enlargement of the
field of view and monitored area.
|
53 |
Classification de situations de conduite et détection des événements critiques d'un deux roues motorisé / Powered Two Wheelers riding patterns classification and critical events recognitionAttal, Ferhat 06 July 2015 (has links)
L'objectif de cette thèse est de développer des outils d'analyse de données recueillies sur les deux roues motorisés (2RMs). Dans ce cadre, des expérimentations sont menées sur des motos instrumentés dans un contexte de conduite réelle incluant à la fois des conduites normales dites naturelles et des conduites à risques (presque chute et chute). Dans la première partie de la thèse, des méthodes d'apprentissage supervisé ont été utilisées pour la classification de situations de conduite d'un 2RM. Les approches développées dans ce contexte ont montré l'intérêt de prendre en compte l'aspect temporel des données dans la conduite d'un 2RM. A cet effet, nous avons montré l'efficacité des modèles de Markov cachés. La seconde partie de cette thèse porte sur le développement d'outils de détection et de classification hors ligne des évènements critiques de conduite, ainsi que, la détection en ligne des situations de chute d'un 2RM. L'approche proposée pour la détection hors ligne des évènements critiques de conduite repose sur l'utilisation d'un modèle de mélange de densités gaussiennes à proportions logistiques. Ce modèle sert à la segmentation non supervisée des séquences de conduite. Des caractéristiques extraites du paramètre du modèle de mélange sont utilisées comme entrées d'un classifieur pour classifier les évènements critiques. Pour la détection en ligne de chute, une méthode simple de détection séquentielle d'anomalies basée sur la carte de contrôle MCUSUM a été proposée. Les résultats obtenus sur une base de données réelle ont permis de montrer l'efficacité des méthodologies proposées à la fois pour la classification de situations de conduite et à la détection des évènements critiques de conduite / This thesis aims to develop framework tools for analyzing and understanding the riding of Powered Two Wheelers (PTW). Experiments are conducted using instrumented PTW in real context including both normal (naturalistic) riding behaviors and critical riding behaviors (near fall and fall). The two objectives of this thesis are the riding patterns classification and critical riding events detection. In the first part of this thesis, a machine-learning framework is used for riding pattern recognition problem. Therefore, this problem is formulated as a classification task to identify the class of riding patterns. The approaches developed in this context have shown the interest to take into account the temporal aspect of the data in PTW riding. Moreover, we have shown the effectiveness of hidden Markov models for such problem. The second part of this thesis focuses on the development of the off-line detection and classification of critical riding events tools and the on-line fall detection. The problem of detection and classification of critical riding events has been performed towards two steps: (1) the segmentation step, where the multidimensional time of data were modeled and segmented by using a mixture model with quadratic logistic proportions; (2) the classification step, which consists in using a pattern recognition algorithm in order to assign each event by its extracted features to one of the three classes namely Fall, near Fall and Naturalistic riding. Regarding the fall detection problem, it is formulated as a sequential anomaly detection problem. The Multivariate CUmulative SUM (MCUSUM) control chart was applied on the data collected from sensors mounted on the motorcycle. The obtained results on a real database have shown the effectiveness of the proposed methodology for both riding pattern recognition and critical riding events detection problems
|
Page generated in 0.1002 seconds