• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Technologies d'information de santé chez les personnes âgées : attitudes, conseils et volonté d'usage

Lévesque Ryan, Maude 23 September 2019 (has links)
Avec le phénomène de vieillissement de la population vécu actuellement, la recherche de solutions pour mieux supporter les personnes âgées sans affubler davantage la main d’œuvre se tourne vers une meilleure prévention et gestion des problèmes de santé supportée par des technologies d’information de santé. Le succès de l’adoption de ces technologies est tributaire de la perception face à l’usage de celles-ci . Cette étude a exploré les perceptions de personnes âgées à l’égard de la télésurveillance, d’appareils d’auto-suivi et de détection des chutes par l’entremise de groupes de discussion et d’entrevues. Les thèmes ressortis comprennent la familiarité avec les technologies présentées, les bénéfices, préoccupations et utilités perçus à leur usage, les conseils et améliorations souhaitées et la volonté d’usage des appareils. Les participants connaissaient peu les technologies présentées, entretenaient une attitude positive à leurs égards et percevaient d’importants bénéfices à y recourir tant pour la santé que pour la tranquillité d’esprit. Toutefois, ils entretenaient certaines craintes, surtout reliées aux difficultés de certains à pouvoir utiliser ces technologies. Ils percevaient l’utilité de celles-ci dans de nombreux contextes, mais ne s’identifiaient pas au besoin d’y recourir et ne souhaitaient pas personnellement le faire à court terme, à moins d’avoir déjà utilisé celles-ci. Adapter les technologies aux diverses limitations des personnes âgées, offrir des formations à l’usage, informer davantage la population sur les technologies d’information de santé existantes et s’assurer de rendre accessible l’usage de celles-ci pourrait favoriser l’adoption des technologies par les personnes âgées. Des recherches sont nécessaires pour vérifier si ces conclusions s’appliquent à une population plus large et concernent d’autres technologies de santé pouvant supporter les personnes âgées.
2

Réseaux Évidentiels pour la fusion de données multimodales hétérogènes : application à la détection de chutes / Evidential Networks-based heterogeneous multimodal data fusion : application for fall detection

Cavalcante Aguilar, Paulo Armando 22 October 2012 (has links)
Ces travaux de recherche se sont déroulés dans le cadre du développement d’une application de télévigilance médicale ayant pour but de détecter des situations de détresse à travers l’utilisation de plusieurs types de capteurs. La fusion multi-capteurs peut fournir des informations plus précises et fiables par rapport aux informations provenant de chaque capteur prises séparément. Par ailleurs les données issues de ces capteurs hétérogènes possèdent différents degrés d’imperfection et de confiance. Parmi les techniques de fusion multi-capteurs, les méthodes crédibilistes fondées sur la théorie de Dempster-Shafer sont actuellement considérées comme les plus adaptées à la représentation et au traitement des informations imparfaites, de ce fait permettant une modélisation plus réaliste du problème. En nous appuyant sur une représentation graphique de la théorie de Dempster-Shafer appelée Réseaux Évidentiels, nous proposons une structure de fusion de données hétérogènes issues de plusieurs capteurs pour la détection de chutes afin de maximiser les performances de détection chutes et ainsi de rendre le système plus fiable. La non-stationnarité des signaux recueillis sur les capteurs du système considéré peut conduire à une dégradation des conditions expérimentales, pouvant rendre les Réseaux Évidentiels incohérents dans leurs décisions. Afin de compenser les effets résultant de la non-stationnarité des signaux provenant des capteurs, les Réseaux Évidentiels sont rendus évolutifs dans le temps, ce qui nous a conduit à introduire les Réseaux Evidentiels Dynamiques dans nos traitements et à les évaluer sur des scénarios de chute simulés correspondant à des cas d’usage variés / This work took place in the development of a remote home healthcare monitoring application designed to detect distress situations through several types of sensors. The multi-sensor fusion can provide more accurate and reliable information compared to information provided by each sensor separately. Furthermore, data from multiple heterogeneous sensors present in the remote home healthcare monitoring systems have different degrees of imperfection and trust. Among the multi-sensor fusion techniques, belief methods based on Dempster-Shafer Theory are currently considered as the most appropriate for the representation and processing of imperfect information, thus allowing a more realistic modeling of the problem. Based on a graphical representation of the Dempster-Shafer called Evidential Networks, a structure of heterogeneous data fusion from multiple sensors for fall detection has been proposed in order to maximize the performance of automatic fall detection and thus make the system more reliable. Sensors’ non-stationary signals of the considered system may lead to degradation of the experimental conditions and make Evidential Networks inconsistent in their decisions. In order to compensate the sensors signals non-stationarity effects, the time evolution is taken into account by introducing the Dynamic Evidential Networks which was evaluated by the simulated fall scenarios corresponding to various use cases
3

Elaborating the Actimetric Profile of Fall Sensitive Patients for Early Detection of Fall Incidents / Élaboration du profil actimétrique de patients sensibles aux chutes pour détecter de manière précoce une possible chute

Chaccour, Kabalan 20 November 2017 (has links)
La croissance et le vieillissement sont inévitables pour la race humaine. Chez les personnes âgées, le vieillissement est souvent accompagné par de nombreuses formes de maladies et de dangers dont les chutes qui affectent la qualité de vie et qui posent un enjeu socio-économique. Mais les chutes sont évitables. Les acteurs de santé, les scientifiques et les chercheurs combinent actuellement des efforts pour développer des systèmes de détection et de prédiction des chutes. Dans le contexte de la prédiction des chutes, l'objectif de cette thèse est d'élaborer le profile actimétrique des patients sensibles aux chutes afin de les alerter d'une possible chute. Ceci consiste principalement à développer un système capable de surveiller les paramètres de la marche des personnes durant leurs activités quotidiennes avec un minimum d'intrusivité. Dans une première contribution, nous avons proposé une classification générique des systèmes liés à la chute en fonction du déploiement de leurs capteurs. Nous avons distingué les systèmes portables, les systèmes non-portables et les systèmes qui combinent les deux. En se basant sur cette classification, nous avons proposé notre plateforme WMFL v1.0 dans une deuxième contribution. WMFL combine une chaussure équipée par des capteurs de force avec des dalles où nous avons intégrés des capteurs optiques infrarouges. La fusion de ces deux systèmes assure une prévention à l'intérieure et à l'extérieure des locaux. WMFL peut être aussi déployées dans une clinique. Dans une troisième contribution, nous avons proposé une méthode de prédiction des chutes en se basant sur l'analyse du déplacement du centre de pression (projeté du centre de masse) sur la surface plantaire du pied durant la marche. La méthode utilise la fenêtre glissante spatio-temporelle pour alerter le patient d'une chute potentielle et pour déterminer le risque de chute à la fin de la marche. / Growth is the normal change of the human body and getting old is inevitable to human race. As a result, elderly people are subject to many forms of diseases and dangers among which falls are considered very serious in terms of quality of life and socio-economic costs. But falls can be manageable. Health practitioners, scientists and researchers currently combine efforts to develop systems capable of detecting and predicting falls. In the context of fall prediction, the goal of this thesis is to elaborate the actimetric profile of fall sensitive patients to alert them from a potential fall. It mainly consists of developing a system capable of monitoring gait and balance parameters during their daily activities with minimum intrusiveness. These are usually assessed in clinical settings using high-cost tools. In our first contribution, we proposed a generic classification of fall-related systems based on their sensors deployment. These are classified as Wearable, Non-Wearable and Fusion Systems. Based on the generic classification, we proposed the WMFL v1.0 platform in our second contribution. WMFL fuses a Foot Wear Force Sensing device with an Ambient system using IR-sensing floor tiles. The platform can be deployed at homes or in clinics. It ensures an indoor-outdoor protection. In a third contribution, we proposed an early fall detection approach to determine the risk of falling by analyzing the displacement of the Center of Pressure projecting the amount of sway of the Center of Mass on the foot plantar surface. The method uses the spatio-temporal sliding window to alert the patient of a potential fall.
4

Réseaux Évidentiels pour la fusion de données multimodales hétérogènes : application à la détection de chutes

Cavalcante Aguilar, Paulo Armando 22 October 2012 (has links) (PDF)
Ces travaux de recherche se sont déroulés dans le cadre du développement d'une application de télévigilance médicale ayant pour but de détecter des situations de détresse à travers l'utilisation de plusieurs types de capteurs. La fusion multi-capteurs peut fournir des informations plus précises et fiables par rapport aux informations provenant de chaque capteur prises séparément. Par ailleurs les données issues de ces capteurs hétérogènes possèdent différents degrés d'imperfection et de confiance. Parmi les techniques de fusion multi-capteurs, les méthodes crédibilistes fondées sur la théorie de Dempster-Shafer sont actuellement considérées comme les plus adaptées à la représentation et au traitement des informations imparfaites, de ce fait permettant une modélisation plus réaliste du problème. En nous appuyant sur une représentation graphique de la théorie de Dempster-Shafer appelée Réseaux Évidentiels, nous proposons une structure de fusion de données hétérogènes issues de plusieurs capteurs pour la détection de chutes afin de maximiser les performances de détection chutes et ainsi de rendre le système plus fiable. La non-stationnarité des signaux recueillis sur les capteurs du système considéré peut conduire à une dégradation des conditions expérimentales, pouvant rendre les Réseaux Évidentiels incohérents dans leurs décisions. Afin de compenser les effets résultant de la non-stationnarité des signaux provenant des capteurs, les Réseaux Évidentiels sont rendus évolutifs dans le temps, ce qui nous a conduit à introduire les Réseaux Evidentiels Dynamiques dans nos traitements et à les évaluer sur des scénarios de chute simulés correspondant à des cas d'usage variés
5

Vidéosurveillance intelligente pour la détection de chutes chez les personnes âgées

Rougier, Caroline 03 1900 (has links)
Les pays industrialisés comme le Canada doivent faire face au vieillissement de leur population. En particulier, la majorité des personnes âgées, vivant à domicile et souvent seules, font face à des situations à risques telles que des chutes. Dans ce contexte, la vidéosurveillance est une solution innovante qui peut leur permettre de vivre normalement dans un environnement sécurisé. L’idée serait de placer un réseau de caméras dans l’appartement de la personne pour détecter automatiquement une chute. En cas de problème, un message pourrait être envoyé suivant l’urgence aux secours ou à la famille via une connexion internet sécurisée. Pour un système bas coût, nous avons limité le nombre de caméras à une seule par pièce ce qui nous a poussé à explorer les méthodes monoculaires de détection de chutes. Nous avons d’abord exploré le problème d’un point de vue 2D (image) en nous intéressant aux changements importants de la silhouette de la personne lors d’une chute. Les données d’activités normales d’une personne âgée ont été modélisées par un mélange de gaussiennes nous permettant de détecter tout événement anormal. Notre méthode a été validée à l’aide d’une vidéothèque de chutes simulées et d’activités normales réalistes. Cependant, une information 3D telle que la localisation de la personne par rapport à son environnement peut être très intéressante pour un système d’analyse de comportement. Bien qu’il soit préférable d’utiliser un système multi-caméras pour obtenir une information 3D, nous avons prouvé qu’avec une seule caméra calibrée, il était possible de localiser une personne dans son environnement grâce à sa tête. Concrêtement, la tête de la personne, modélisée par une ellipsoide, est suivie dans la séquence d’images à l’aide d’un filtre à particules. La précision de la localisation 3D de la tête a été évaluée avec une bibliothèque de séquence vidéos contenant les vraies localisations 3D obtenues par un système de capture de mouvement (Motion Capture). Un exemple d’application utilisant la trajectoire 3D de la tête est proposée dans le cadre de la détection de chutes. En conclusion, un système de vidéosurveillance pour la détection de chutes avec une seule caméra par pièce est parfaitement envisageable. Pour réduire au maximum les risques de fausses alarmes, une méthode hybride combinant des informations 2D et 3D pourrait être envisagée. / Developed countries like Canada have to adapt to a growing population of seniors. A majority of seniors reside in private homes and most of them live alone, which can be dangerous in case of a fall, particularly if the person cannot call for help. Video surveillance is a new and promising solution for healthcare systems to ensure the safety of elderly people at home. Concretely, a camera network would be placed in the apartment of the person in order to automatically detect a fall. When a fall is detected, a message would be sent to the emergency center or to the family through a secure Internet connection. For a low cost system, we must limit the number of cameras to only one per room, which leads us to explore monocular methods for fall detection. We first studied 2D information (images) by analyzing the shape deformation during a fall. Normal activities of an elderly person were used to train a Gaussian Mixture Model (GMM) to detect any abnormal event. Our method was tested with a realistic video data set of simulated falls and normal activities. However, 3D information like the spatial localization of a person in a room can be very useful for action recognition. Although a multi-camera system is usually preferable to acquire 3D information, we have demonstrated that, with only one calibrated camera, it is possible to localize a person in his/her environment using the person’s head. Concretely, the head, modeled by a 3D ellipsoid, was tracked in the video sequence using particle filters. The precision of the 3D head localization was evaluated with a video data set containing the real 3D head localizations obtained with a Motion Capture system. An application example using the 3D head trajectory for fall detection is also proposed. In conclusion, we have confirmed that a video surveillance system for fall detection with only one camera per room is feasible. To reduce the risk of false alarms, a hybrid method combining 2D and 3D information could be considered.
6

Vidéosurveillance intelligente pour la détection de chutes chez les personnes âgées

Rougier, Caroline 03 1900 (has links)
Les pays industrialisés comme le Canada doivent faire face au vieillissement de leur population. En particulier, la majorité des personnes âgées, vivant à domicile et souvent seules, font face à des situations à risques telles que des chutes. Dans ce contexte, la vidéosurveillance est une solution innovante qui peut leur permettre de vivre normalement dans un environnement sécurisé. L’idée serait de placer un réseau de caméras dans l’appartement de la personne pour détecter automatiquement une chute. En cas de problème, un message pourrait être envoyé suivant l’urgence aux secours ou à la famille via une connexion internet sécurisée. Pour un système bas coût, nous avons limité le nombre de caméras à une seule par pièce ce qui nous a poussé à explorer les méthodes monoculaires de détection de chutes. Nous avons d’abord exploré le problème d’un point de vue 2D (image) en nous intéressant aux changements importants de la silhouette de la personne lors d’une chute. Les données d’activités normales d’une personne âgée ont été modélisées par un mélange de gaussiennes nous permettant de détecter tout événement anormal. Notre méthode a été validée à l’aide d’une vidéothèque de chutes simulées et d’activités normales réalistes. Cependant, une information 3D telle que la localisation de la personne par rapport à son environnement peut être très intéressante pour un système d’analyse de comportement. Bien qu’il soit préférable d’utiliser un système multi-caméras pour obtenir une information 3D, nous avons prouvé qu’avec une seule caméra calibrée, il était possible de localiser une personne dans son environnement grâce à sa tête. Concrêtement, la tête de la personne, modélisée par une ellipsoide, est suivie dans la séquence d’images à l’aide d’un filtre à particules. La précision de la localisation 3D de la tête a été évaluée avec une bibliothèque de séquence vidéos contenant les vraies localisations 3D obtenues par un système de capture de mouvement (Motion Capture). Un exemple d’application utilisant la trajectoire 3D de la tête est proposée dans le cadre de la détection de chutes. En conclusion, un système de vidéosurveillance pour la détection de chutes avec une seule caméra par pièce est parfaitement envisageable. Pour réduire au maximum les risques de fausses alarmes, une méthode hybride combinant des informations 2D et 3D pourrait être envisagée. / Developed countries like Canada have to adapt to a growing population of seniors. A majority of seniors reside in private homes and most of them live alone, which can be dangerous in case of a fall, particularly if the person cannot call for help. Video surveillance is a new and promising solution for healthcare systems to ensure the safety of elderly people at home. Concretely, a camera network would be placed in the apartment of the person in order to automatically detect a fall. When a fall is detected, a message would be sent to the emergency center or to the family through a secure Internet connection. For a low cost system, we must limit the number of cameras to only one per room, which leads us to explore monocular methods for fall detection. We first studied 2D information (images) by analyzing the shape deformation during a fall. Normal activities of an elderly person were used to train a Gaussian Mixture Model (GMM) to detect any abnormal event. Our method was tested with a realistic video data set of simulated falls and normal activities. However, 3D information like the spatial localization of a person in a room can be very useful for action recognition. Although a multi-camera system is usually preferable to acquire 3D information, we have demonstrated that, with only one calibrated camera, it is possible to localize a person in his/her environment using the person’s head. Concretely, the head, modeled by a 3D ellipsoid, was tracked in the video sequence using particle filters. The precision of the 3D head localization was evaluated with a video data set containing the real 3D head localizations obtained with a Motion Capture system. An application example using the 3D head trajectory for fall detection is also proposed. In conclusion, we have confirmed that a video surveillance system for fall detection with only one camera per room is feasible. To reduce the risk of false alarms, a hybrid method combining 2D and 3D information could be considered.
7

Détection de chute à l'aide d'une caméra de profondeur

Alla, Jules-Ryane S. 04 1900 (has links)
Les chutes chez les personnes âgées représentent un problème important de santé publique. Des études montrent qu’environ 30 % des personnes âgées de 65 ans et plus chutent chaque année au Canada, entraînant des conséquences néfastes sur les plans individuel, familiale et sociale. Face à une telle situation la vidéosurveillance est une solution efficace assurant la sécurité de ces personnes. À ce jour de nombreux systèmes d’assistance de services à la personne existent. Ces dispositifs permettent à la personne âgée de vivre chez elle tout en assurant sa sécurité par le port d'un capteur. Cependant le port du capteur en permanence par le sujet est peu confortable et contraignant. C'est pourquoi la recherche s’est récemment intéressée à l’utilisation de caméras au lieu de capteurs portables. Le but de ce projet est de démontrer que l'utilisation d'un dispositif de vidéosurveillance peut contribuer à la réduction de ce fléau. Dans ce document nous présentons une approche de détection automatique de chute, basée sur une méthode de suivi 3D du sujet en utilisant une caméra de profondeur (Kinect de Microsoft) positionnée à la verticale du sol. Ce suivi est réalisé en utilisant la silhouette extraite en temps réel avec une approche robuste d’extraction de fond 3D basée sur la variation de profondeur des pixels dans la scène. Cette méthode se fondera sur une initialisation par une capture de la scène sans aucun sujet. Une fois la silhouette extraite, les 10% de la silhouette correspondant à la zone la plus haute de la silhouette (la plus proche de l'objectif de la Kinect) sera analysée en temps réel selon la vitesse et la position de son centre de gravité. Ces critères permettront donc après analyse de détecter la chute, puis d'émettre un signal (courrier ou texto) vers l'individu ou à l’autorité en charge de la personne âgée. Cette méthode a été validée à l’aide de plusieurs vidéos de chutes simulées par un cascadeur. La position de la caméra et son information de profondeur réduisent de façon considérable les risques de fausses alarmes de chute. Positionnée verticalement au sol, la caméra permet donc d'analyser la scène et surtout de procéder au suivi de la silhouette sans occultation majeure, qui conduisent dans certains cas à des fausses alertes. En outre les différents critères de détection de chute, sont des caractéristiques fiables pour différencier la chute d'une personne, d'un accroupissement ou d'une position assise. Néanmoins l'angle de vue de la caméra demeure un problème car il n'est pas assez grand pour couvrir une surface conséquente. Une solution à ce dilemme serait de fixer une lentille sur l'objectif de la Kinect permettant l’élargissement de la zone surveillée. / Elderly falls are a major public health problem. Studies show that about 30% of people aged 65 and older fall each year in Canada, with negative consequences on individuals, their families and our society. Faced with such a situation a video surveillance system is an effective solution to ensure the safety of these people. To this day many systems support services to the elderly. These devices allow the elderly to live at home while ensuring their safety by wearing a sensor. However the sensor must be worn at all times by the subject which is uncomfortable and restrictive. This is why research has recently been interested in the use of cameras instead of wearable sensors. The goal of this project is to demonstrate that the use of a video surveillance system can help to reduce this problem. In this thesis we present an approach for automatic detection of falls based on a method for tracking 3D subject using a depth camera (Kinect from Microsoft) positioned vertically to the ground. This monitoring is done using the silhouette extracted in real time with a robust approach for extracting 3D depth based on the depth variation of the pixels in the scene. This method is based on an initial capture the scene without any body. Once extracted, 10% of the silhouette corresponding to the uppermost region (nearest to the Kinect) will be analyzed in real time depending on the speed and the position of its center of gravity . These criteria will be analysed to detect the fall, then a signal (email or SMS) will be transmitted to an individual or to the authority in charge of the elderly. This method was validated using several videos of a stunt simulating falls. The camera position and depth information reduce so considerably the risk of false alarms. Positioned vertically above the ground, the camera makes it possible to analyze the scene especially for tracking the silhouette without major occlusion, which in some cases lead to false alarms. In addition, the various criteria for fall detection, are reliable characteristics for distinguishing the fall of a person, from squatting or sitting. Nevertheless, the angle of the camera remains a problem because it is not large enough to cover a large surface. A solution to this dilemma would be to fix a lens on the objective of the Kinect for the enlargement of the field of view and monitored area.
8

Détection de chute à l'aide d'une caméra de profondeur

Alla, Jules-Ryane S. 04 1900 (has links)
Les chutes chez les personnes âgées représentent un problème important de santé publique. Des études montrent qu’environ 30 % des personnes âgées de 65 ans et plus chutent chaque année au Canada, entraînant des conséquences néfastes sur les plans individuel, familiale et sociale. Face à une telle situation la vidéosurveillance est une solution efficace assurant la sécurité de ces personnes. À ce jour de nombreux systèmes d’assistance de services à la personne existent. Ces dispositifs permettent à la personne âgée de vivre chez elle tout en assurant sa sécurité par le port d'un capteur. Cependant le port du capteur en permanence par le sujet est peu confortable et contraignant. C'est pourquoi la recherche s’est récemment intéressée à l’utilisation de caméras au lieu de capteurs portables. Le but de ce projet est de démontrer que l'utilisation d'un dispositif de vidéosurveillance peut contribuer à la réduction de ce fléau. Dans ce document nous présentons une approche de détection automatique de chute, basée sur une méthode de suivi 3D du sujet en utilisant une caméra de profondeur (Kinect de Microsoft) positionnée à la verticale du sol. Ce suivi est réalisé en utilisant la silhouette extraite en temps réel avec une approche robuste d’extraction de fond 3D basée sur la variation de profondeur des pixels dans la scène. Cette méthode se fondera sur une initialisation par une capture de la scène sans aucun sujet. Une fois la silhouette extraite, les 10% de la silhouette correspondant à la zone la plus haute de la silhouette (la plus proche de l'objectif de la Kinect) sera analysée en temps réel selon la vitesse et la position de son centre de gravité. Ces critères permettront donc après analyse de détecter la chute, puis d'émettre un signal (courrier ou texto) vers l'individu ou à l’autorité en charge de la personne âgée. Cette méthode a été validée à l’aide de plusieurs vidéos de chutes simulées par un cascadeur. La position de la caméra et son information de profondeur réduisent de façon considérable les risques de fausses alarmes de chute. Positionnée verticalement au sol, la caméra permet donc d'analyser la scène et surtout de procéder au suivi de la silhouette sans occultation majeure, qui conduisent dans certains cas à des fausses alertes. En outre les différents critères de détection de chute, sont des caractéristiques fiables pour différencier la chute d'une personne, d'un accroupissement ou d'une position assise. Néanmoins l'angle de vue de la caméra demeure un problème car il n'est pas assez grand pour couvrir une surface conséquente. Une solution à ce dilemme serait de fixer une lentille sur l'objectif de la Kinect permettant l’élargissement de la zone surveillée. / Elderly falls are a major public health problem. Studies show that about 30% of people aged 65 and older fall each year in Canada, with negative consequences on individuals, their families and our society. Faced with such a situation a video surveillance system is an effective solution to ensure the safety of these people. To this day many systems support services to the elderly. These devices allow the elderly to live at home while ensuring their safety by wearing a sensor. However the sensor must be worn at all times by the subject which is uncomfortable and restrictive. This is why research has recently been interested in the use of cameras instead of wearable sensors. The goal of this project is to demonstrate that the use of a video surveillance system can help to reduce this problem. In this thesis we present an approach for automatic detection of falls based on a method for tracking 3D subject using a depth camera (Kinect from Microsoft) positioned vertically to the ground. This monitoring is done using the silhouette extracted in real time with a robust approach for extracting 3D depth based on the depth variation of the pixels in the scene. This method is based on an initial capture the scene without any body. Once extracted, 10% of the silhouette corresponding to the uppermost region (nearest to the Kinect) will be analyzed in real time depending on the speed and the position of its center of gravity . These criteria will be analysed to detect the fall, then a signal (email or SMS) will be transmitted to an individual or to the authority in charge of the elderly. This method was validated using several videos of a stunt simulating falls. The camera position and depth information reduce so considerably the risk of false alarms. Positioned vertically above the ground, the camera makes it possible to analyze the scene especially for tracking the silhouette without major occlusion, which in some cases lead to false alarms. In addition, the various criteria for fall detection, are reliable characteristics for distinguishing the fall of a person, from squatting or sitting. Nevertheless, the angle of the camera remains a problem because it is not large enough to cover a large surface. A solution to this dilemma would be to fix a lens on the objective of the Kinect for the enlargement of the field of view and monitored area.

Page generated in 0.1111 seconds