• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Building Applied Photovoltaic Array: Thermal Modeling and Fan Cooling

January 2010 (has links)
abstract: Thermal modeling and investigation into heat extraction methods for building-applied photovoltaic (BAPV) systems have become important for the industry in order to predict energy production and lower the cost per kilowatt-hour (kWh) of generating electricity from these types of systems. High operating temperatures have a direct impact on the performance of BAPV systems and can reduce power output by as much as 10 to 20%. The traditional method of minimizing the operating temperature of BAPV modules has been to include a suitable air gap for ventilation between the rooftop and the modules. There has been research done at Arizona State University (ASU) which investigates the optimum air gap spacing on sufficiently spaced (2-6 inch vertical; 2-inch lateral) modules of four columns. However, the thermal modeling of a large continuous array (with multiple modules of the same type and size and at the same air gap) had yet to be done at ASU prior to this project. In addition to the air gap effect analysis, the industry is exploring different ways of extracting the heat from PV modules including hybrid photovoltaic-thermal systems (PV/T). The goal of this project was to develop a thermal model for a small residential BAPV array consisting of 12 identical polycrystalline silicon modules at an air gap of 2.5 inches from the rooftop. The thermal model coefficients are empirically derived from a simulated field test setup at ASU and are presented in this thesis. Additionally, this project investigates the effects of cooling the array with a 40-Watt exhaust fan. The fan had negligible effect on power output or efficiency for this 2.5-inch air gap array, but provided slightly lower temperatures and better temperature uniformity across the array. / Dissertation/Thesis / M.S. Technology 2010
2

Evaporative Cooling in Semi-Arid Climates

Giacomelli, Gene, Hahne, Kathryn 05 1900 (has links)
2 pp. / In the semi-arid climate of southern AZ, evaporative cooling systems are commonly used and very effective for cooling homes (swamp coolers), outdoor areas (misters), and for greenhouses used for commercial and horticultural plant production (pad-and-fan, high-pressure-fog). The purpose of this brochure is to educate users about strategies they can employ to save water and improve the performance of evaporative cooling systems. Principles of operation, a list of advantages and disadvantages, and a comparison of common systems is also included, to help users decide the best system for them.
3

Efficient Volvo Bus Cooling System,Using Electrical Fans : A comparison between hydraulic and electrical fans

Fernandes, Rita January 2014 (has links)
Economical and environmental factors together with energy policies towards more efficient systemsare the driving force for the development of the vehicle industry. Significant changes have beenmade to fulfill new emissions legislation but the basic internal combustion vehicle architecture hasbeen kept. New emission treatment systems that increase the thermal loading of the cooling systemhad been added within the same package envelope as before, which means less space to place coolingfans and a greater need for airflow. Changes in the cooling system, namely the replacement of thehydraulic fan drive system by electrical fans is one of the energy efficient alternatives for severalcity buses under certain environments, like the ”typical red city buses”, well-known in the UnitedKingdom. In this thesis study, hydraulic fans are compared with electrical fans and a road-mapof the benefits and drawbacks of the two systems is developed, based on real traffic performanceperformance data and the results of existing simulations and tests. In addition, new simulations arepresented in order to find the most efficient design for the cooling system as well as a comparisonof these results with previous ones. This road map will be used later by Volvo-Buses Group as atool to better understand in which circumstances electrical fans can be beneficial, in terms of fuelconsumption, noise production, cooling performance, control of the fans and associated costs.

Page generated in 0.0854 seconds