• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 5
  • Tagged with
  • 15
  • 15
  • 15
  • 10
  • 8
  • 6
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fanconi Anämie im Erwachsenenalter / Fanconi Anemia in Adulthood

Hohnbaum, Grit January 2009 (has links) (PDF)
Die Fanconi Anämie (FA) ist eine seltene autosomal und X-chromosomal rezessiv vererbte Krankheit, die zur Gruppe der Chromosomeninstabilitäts-Syndrome gehört. Klinisch manifestiert sich die FA durch kongenitale Fehlbildungen, progressives Knochenmarkversagen und eine Prädisposition für die Entwicklung von malignen Neoplasien in frühen Jahren. Am häufigsten ist unter FA-Patienten die Entstehung einer aplastischen Anämie zu beobachten mit einer kumulativen Inzidenz von 90% im Alter von 40 Jahren (Huck et al., 2006). Vom frühen Erwachsenenalter an stellen solide Tumoren, vornehmlich Plattenepithel-Karzinome des Oropharygeal- und Genitaltraktes, das Hauptproblem dar. Auf zellulärer Ebene ist die FA durch eine hohe spontane Chromosomenbrüchigkeit verbunden mit einer erhöhten chromosomalen Sensibilität gegenüber genotoxischen Substanzen und reaktiven Sauerstoffspezies gekennzeichnet. Seit einer stetigen Verbesserung der hämatopoietischen Stammzelltransplantation durch spezifische Konditionierungsprotokolle erreichen immer mehr FA-Patienten das Erwachsenenalter. In der Literatur häufen sich Berichte von FA-Patienten, die erstmalig im Erwachsenenalter durch ein frühes Auftreten von Malignomen oder Komplikationen in der Behandlung von Neoplasien diagnostiziert werden. Neben einer erfolgreichen HSZT können auch „ milde“ Mutationen oder die Bildung eines somatischen Mosaiks für das Überleben der FA Patienten in das Erwachsenenalter verantwortlich sein. Dies bedeutet, dass sich die FA als bisher rein pädiatrisch angesehenes Krankheitsbild mehr und mehr zu einer auch das Erwachsenenalter betreffenden Entität entwickelt. In der vorliegenden Arbeit wurden 131 FA-Patienten mit einem Alter von über 20 Jahren identifiziert und in verschiedene Gruppen eingeteilt. Damit wurde es möglich, die Verteilung der Patienten hinsichtlich ihres Geschlechts, der Komplementationsgruppe sowie der vermutlichen Ursachen für ein verlängertes Überleben dokumentieren zu können. 42 Patientenbeispiele stammen aus Literaturberichten von 1964 bis 2008, Informationen über 36 Patienten wurden dem US-amerikanischen Fanconi Anemia Research Fund („FARF“) entnommen und für 53 Patienten dienten die Krankenunterlagen des Instituts für Humangenetik an der Universität Würzburg als Grundlage. Es konnte gezeigt werden, dass etwa doppelt soviel Frauen wie Männer mit FA ein Alter jenseits des 20. Lebensjahres erreichten. Eine Zuordnung zu einer Komplementationsgruppe war bei 66 Patienten möglich. Diese ließ erkennen, dass im erwachsenen Patientenkollektiv die Komplementationsgruppen FA-A, FA-C, FA-D2, FA-G, FA-I und FA-J, jedoch keine der Gruppen FA-B, FA-D1, FA-E, FA-F, FA-L, FA-M und FA-N vertreten sind. Weiterhin wurden die erwachsenen FA-Patienten in vier verschiedene Gruppen nach der wahrscheinlichen Ursache ihres Überlebens eingeteilt werden: 26% erhielten eine erfolgreiche hämatopoietische Stammzelltransplantation, 17% entwickelten im Verlauf ein Mosaik, 4% konnten als Träger einer milden Mutation identifiziert werden. Die genaue Ursache für ein verlängertes Überleben bleibt jedoch bei 53% der FA-Patienten unbekannt, da Informationen bezüglich früherer Therapien und vor allem die Ergebnisse molekulargenetischer Untersuchungen fehlen. Bemerkenswert ist, dass der Großteil der über 50Jährigen ein Mosaik aufwies, während in dieser Altersgruppe Patienten mit erfolgreicher HSZT oder einer milden Mutation nur zu einem geringen Teil vertreten sind. Die für die FA charakteristische genetische Instabilität spiegelt sich in der hohen Anzahl (64%) von FA-Patienten wider, die auch ohne vorhergehende HSZT ein Plattenepithel-Karzinom (SCC) entwickelten. Nach HSZT manifestierte sich bei 25% der erwachsenen FA-Patienten ein SCC. Die Beachtung der medizinischen Besonderheiten des Erwachsenenalters ist von großer Bedeutung in der Prävention und Therapie von Komplikationen der FA und erfordert modifizierte Behandlungsstrategien für erwachsene FA-Patienten. Sorgfältig dokumentierte Langzeitbeobachtungen sowie die Identifizierung von Komplementationsgruppen und Mutationen bei jedem einzelnen FA-Patienten bilden die Grundlage für prognostische Aussagen, die derzeit nur beschränkt möglich sind. In zukünftigen Untersuchungen werden eine Reihe bisher ungelöster Fragen zu beantworten sein. Hierzu gehören die mögliche Rolle der Androgentherapie hinsichtlich der Förderung einer Mosaikbildung, die Faktoren, welche zu der auffälligen Geschlechterverteilung im Erwachsenenalter beitragen, sowie die Erforschung der Bedeutung „milder“ Mutationen und somatischer Reversionen. Die insgesamt sehr beeindruckenden Langzeitverläufe sowie die hohe Inzidenz von nicht-hämatologischen Komplikationen/Malignomen zeigen deutlich, dass sich die Fanconi Anämie zunehmend auch zu einer internistisch/onkologischen Krankheit entwickelt. / Fanconi anemia (FA) is a rare autosomal and X-chromosomal recessive disorder belonging to the group of chromosomal instability syndromes. FA is clinically characterised by congenital malformations, progressive bone marrow failure and a high risk for developing malignant neoplasia. FA-patients frequently present as aplastic anemia with a cumulative incidence of 90% at 40 years of age (Huck et al., 2006). From early adulthood on the mean clinical problem for FA-patients is the high incidence of solid tumors, predominantly squamous cell carcinomas of the oropharyngeal and genital tracts. At the cellular level FA is characterized by high spontaneous chromosomal breakage combined with strongly increased sensitivity to genotoxic agents such as DEB or MMC. Due to recent improvements of hematopoietic stem cell transplantation more and more FA-patients survive to adulthood. There is an increasing number of reports of adult FA patients being diagnosed in adulthood because of early onset of malignancies and/or unusually severe reactions towards radio- or chemotherapy. Surival to adulthood may result from successful HSCT, but also be due to the existence of a hypomorphic mutation or the development of a somatic reversion of a germline mutation. These life-extending events imply that FA changes more and more from a purely pediatric to an adulthood disease. Here we report 131 FA-patients older than 20 years and attempt to elucidate the probable reasons for their relative longevity. Among other parameters we document these patients with regard to gender, complementation group and presumable underlying causes of survival. 42 patients were reported in the literature from 1964 to 2008. Information of 36 patients derives from the American Fanconi Anemia Research Fund (“FARF”), and 53 patients were found in the local diagnostic database. We show that there are twice as many women as men reaching the adulthood. 66 patients could be assigned to complementation groups FA-A, FA-C, FA-D2, FA-G, FA-I and FA-J. In contrast, patients belonging to complementation groups FA-B, FA-D1, FA-E, FA-F, FA-L, FA-M and FA-N were not represented among our adult patient cohorts. The adult FA-patients were operationally divided in four different groups according to the presumptive cause of survival to adulthood: 26% received a successful HSCT, 17% developed a somatic mosaicism, 4% were likely to carry a hypomorphic mutation. The precise cause of the prolonged survival remains unknown in 53% of the FA-patients. This largest group lacks essential information about clinical course, previous therapeutic interventions, complementation group and mutations. A surprising finding is that there are more cases of somatic reversions among the very few patients older than 50 years. Due to lack of molecular analysis, the number of patients surviving due to hypomorphic mutations is likely to be underestimated. The characteristic genetic instability which affects all body cells is reflected in the high number of adult patients (64%) who developed a squamous cell carcinoma even in the absence of previous HSCT. 5 to 15 years after transplantation, 25% of the patients represented a SCC which again is a higher figure than among transplanted non-FA patients. Adult FA patients frequently present with clinical features that are different from childhood patients. These features include absent or only mild patterns of congenital malformations, normal or only mildly reduced blood counts, early onset SCC of the oropharyngeal and the anogenital region, and/or severe reaction to radiation or chemotherapy of such malignancies. In order to arrive at clinically useful prognostic data, long term monitoring of clinical course but also identification of complementation group and mutations are required in each FA-patient. Future studies should be aimed at elucidating the possible role of the steroid treatments for developing somatic reversion. Even though the primary non-hematological complications of adult FA-patients are early onset squamous cell carcinomas, there are a number of additional organ malfunctions (e.g. diabetes mellitus, hypothyroidism, gonadal failure, osteoporosis) which require attention by physicians trained in endocrinology, internal medicine and oncology. Clearly, FA evolves from a primary childhood to an adult disease.
2

Genomic changes in Fanconi anemia: implications for diagnosis, pathogenesis and prognosis / Genomische Veränderungen bei Fanconi-Anämie

Groß, Michaela January 2002 (has links) (PDF)
Fanconi anemia (FA) is a genetically and phenotypically heterogenous autoso- mal recessive disease associated with chromosomal instability, progressive bone marrow failure, typical birth defects and predisposition to neoplasia. The clinical phenotype is similar in all known complementation groups (FA-A, FA-B, FA-C,FA-D1, FA-D2, FA-E, FA-F and FA-G). The cellular phenotype is characterized by hypersensitivity to DNA crosslinking agents (MMC,DEB), which is exploited as a diagnostic tool. Alltogether, the FA proteins constitute a multiprotein pathway whose precise biochemical function(s) remain unknown. FANCA, FANCC, FANCE, FANCF and FANCG interact in a nuclear complex upstream of FANCD2. Complementation group FA-D1 was recently shown to be due to biallelic mutations in the human breast cancer gene 2 (BRCA2). After DNA damage, the nuclear complex regulates monoubiquitylation of FANCD2, result- ing in targeting of this protein into nuclear foci together with BRCA1 and other DNA damage response proteins. The close connection resp. identity of the FA genes and known players of the DSB repair pathways (BRCA1, BRCA2, Rad51) firmly establishs an important role of the FA gene family in the maintenance of genome integrity. The chapter 1 provides a general introduction to the thesis describing the current knowledge and unsolved problems of Fanconi anemia. The following chapters represent papers submitted or published in scientific literature. They are succeeded by a short general discussion (chapter 7). Mutation analysis in the Fanconi anemia genes revealed gene specific mutation spectra as well as different distributions throughout the genes. These results are described in chapter 1 and chapter 2 with main attention to the first genes identified, namely FANCC, FANCA and FANCG. In chapter 2 we provide general background on mutation analysis and we report all mutations published for FANCA, FANCC and FANCG as well as our own unpublished mutations until the year 2000. In chapter 3 we report a shift of the mutation spectrum previously reported for FANCC after examining ten FA-patients belonging to complementation group C. Seven of those patients carried at least one previously unknown mutation, whereas the other three patients carried five alleles with the Dutch founder mu- tation 65delG and one allele with the Ashkenazi founder mutation IVS4+4A>T, albeit without any known Ashkenazi ancestry. We also describe the first large deletion in FANCC. The newly detected alterations include two missense mu- tations (L423P and T529P) in the 3´-area of the FANCC gene. Since the only previously described missense mutation L554P is also located in this area, a case can be made for the existence of functional domain(s) in that region of the gene. In chapter 4 we report the spectrum of mutations found in the FANCG gene com- piled by several laboratories working on FA. As with other FA genes, most muta- tions have been found only once, however, the truncating mutation, E105X, was identified as a German founder mutation after haplotype analysis. Direct compar- ison of the murine and the human protein sequences revealed two leucine zipper motifs. In one of these the only identified missense mutation was located at a conserved residue, suggesting the leucine zipper providing an essential protein-protein interaction required for FANCG function. With regard to genotype-phenotype correlations, two patients carrying a homozygous E105X mutation were seen to have an early onset of the hematological disorder, whereas the missense mutation seems to lead to a disease with later onset and milder clinical course. In chapter 5 we explore the phenomenon of revertant mosaicism which emerges quite frequently in peripheral blood cells of patients suffering from FA. We de- scribe the types of reversion found in five mosaic FA-patients belonging to com- plementation groups FA-A and FA-C. For our single FA-C-patient intragenic crossover could be proven as the mechanism of self-correction. In the remaining four patients (all of them being compound heterozygous in FANCA), either the paternal or maternal allele has reverted back to WT sequence. We also describe a first example of in vitro phenotypic reversion via the emergence of a compensat- ing missense mutation 15 amino acids downstream of the constitutional mutation explaining the MMC-resistance of the lymphoblastoid cell line of this patient. In chapter 6 we report two FA-A mosaic patients where it could be shown that the spontaneous reversion had taken place in a single hematopoietic stem cell. This has been done by separating blood cells from both patients and searching for the reverted mutation in their granulocytes, monocytes, T- and B-lymphocytes as well as in skin fibroblasts. In both patients, all hematopoietic lineages, but not the fibroblasts, carried the reversion, and comparison to their increase in erythrocyte and platelet counts over time demonstrated that reversion must have taken place in a single hematopoietic stem cell. This corrected stem cell then has been able to undergo self-renewal and also to create a corrected progeny, which over time repopulated all hematopoietic lineages. The pancytopenia of these patients has been cured due to the strong selective growth advantage of the corrected cells in vivo and the increased apoptosis of the mutant hematopoietic cells. / Fanconi Anämie (FA) stellt eine sowohl genetisch als auch phänotypisch hetero- gene, autosomal rezessive Erkrankung dar. Charakteristische Merkmale dieser Erkrankung sind die chromosomale Instabilität, ein fortschreitendes Knochen- marksversagen, multiple kongenitale Abnormalitäten und eine Prädisposition zu diversen Neoplasien. Dieser klinische Phänotyp ist bei allen bisher bekannten Komplementationsgruppen (FA-A, FA-B, FA-C, FA-D1, FA-D2, FA-E, FA-F and FA-G) ähnlich, ebenso wie der zelluläre Phänotyp, der durch Hy- persensitivität zu DNA-quervernetzenden Substanzen, wie MMC und DEB, gekennzeichnet ist. Diese Hypersensitivität wird dementsprechend in der FA-Diagnostik verwandt. Alle FA-Proteine arbeiten in einem "Multiprotein- Pathway" zusammen, dessen exakte biochemische Funktion noch nicht geklärt ist. FANCA, FANCC, FANCE, FANCF und FANCG interagieren in einem nukleären Komplex, der nach DNA-Schädigung die Monoubiquitylierung von FANCD2 reguliert, woraufhin man FANCD2 zusammen mit BRCA1 und anderen DNA-Reparaturproteinen in nukleären Foci detektieren kann. Die Komplemen- tationsgruppe FA-D1 wurde kürzlich biallelischen Mutationen im menschlichen Brustkrebsgen BRCA2 zugeordnet. Die enge Verbindung zwischen den FA- Genen und den Doppelstrangbruch(DSB)-Reparaturgenen (BRCA1, BRCA2, Rad51) deutet auf eine wichtige Rolle der FA-Genfamilie in der Erhaltung der genomischen Stabilität hin. Kapitel 1 gibt eine allgemeine Einleitung dieser Promotionsarbeit. Es liefert Hintergrundinformationen zu Fanconi Anämie basierend auf Publikationen bis einschließlich Mai 2002. In den darauffolgenden Kapiteln 2-6 sind eigene Veröf- fentlichungen zur Fanconi Anämie wiedergegeben, die entweder schon publiziert oder zur Veröffentlichung eingereicht worden sind. Zusätzlich zu den Diskussionsabschnitten in den einzelnen Veröffentlichungen werden diese fünf Arbeiten in Kapitel 7 kurz gemeinsam diskutiert. Die Mutationsanalyse in den diversen FA-Genen lieferte genspezifische Mutations- spektren sowie genspezifische Mutations-Verteilungen. Diese werden in Kapitel 1 und 2 beschrieben, wobei Kapitel 2 nur auf die zuerst entdeckten FA-Gene, FANCC, FANCA und FANCG, eingeht. In Kapitel 2 werden allgemeine Hinter- grundinformationen zur Mutationsanalyse geliefert und alle bis zum Jahr 2000 für FANCA, FANCC und FANCG publizierten Mutationen sowie unsere eigenen bis dato unveröffentlichten Veränderungen dargestellt. In Kapitel 3 berichten wir über eine bemerkenswerte Verschiebung des bisher beschriebenen FANCC-Mutationsspektrums. Von den zehn von uns untersuchten FA-C-Patienten trugen acht zumindest eine neue Mutation, wohingegen die drei restlichen Patienten fünf 65delG-Allele und ein IVS4+4A>T-Allel besaßen. Inter- essanterweise fanden wir auch erstmals große Deletionen im FANCC-Gen, deren Existenz bisher nur für FANCA beschrieben war. Weiterhin werden zwei bisher nicht bekannte Missense Mutationen (L423P und T529P) im 3´-Bereich des Gens beschrieben. In dieser Region findet sich auch der bisher einzige pathogene Aminosäureaustausch, L554P, was auf die Existenz einer funktionellen Domäne in dieser Genregion hindeutet. Außerdem scheinen unsere neu detektierten Muta- tionen vielmehr verstreut im Gen vorzuliegen als dies bisher angenommen worden war. Denn die bisher beschriebenen Veränderungen betreffen vor allem den Exon-bereich 5-6 sowie das amino- und carboxyterminale Ende von FANCC. Kapitel 4 beschreibt das Mutationsspektrum für FANCG, zusammengetragen von verschiedenen FA-Arbeitsgruppen. Wie in den anderen FA-Genen traten die meisten Mutationen auch hier nur einmal auf. Allerdings konnte die trunkierende Mutation, E105X, nach einer Haplotyp-Analyse als deutsche Gründermutation beschrieben werden. Ein direkter Vergleich der Proteinsequenzen von Men- sch und Maus ergab Hinweise auf konservierte Genabschnitte sowie auf zwei Leuzin-Zipper-Motive. Die einzige beschriebene Missense Mutation befindet sich in einem konservierten Bereich eines dieser beiden Leuzin-Zipper, was auf eine wichtige Rolle dieses Motivs für FANCG in Bezug auf Protein-Protein- Interaktionen schließen läßt. Obwohl die Anzahl der Patienten mit vergleichbaren Mutationen zu gering für statistisch signifikante Aussagen war, so fiel doch auf, dass bei den beiden Patienten mit einer homozygoten E105X-Mutation wesentlich früher hämatologische Probleme auftraten als bei dem Patienten mit der heterozygoten Missense Mutation, für den ein milder klinischer Verlauf sowie ein späteres Einsetzen hämatologischer Probleme berichtet wurde. Kapitel 5 und 6 behandeln das Phänomen des reversen Mosaizismus, der sehr häu- fig im Blut von FA-Patienten zu diagnostizieren ist. In Kapitel 5 beschreiben wir die Reversionsmechanismen von fünf Patienten, von denen einer der Komplemen- tationsgruppe C und die anderen vier der Komplementationsgruppe A angehören. Der Mechanismus, welcher der Selbstkorrektur des FA-C-Patienten zugrunde lag, konnte als intragene Rekombination definiert werden. Bei den verbleibenden vier compound heterozygoten FA-A-Patienten war jeweils eine Rückmutation zum Wildtyp auf dem mütterlichen bzw. väterlichen Allel ursächlich für die phäno- typische Gesundung der Blutzellen. Desweiteren beschreiben wir eine in vitro-Reversion in der lymphoblastoiden Linie eines unserer Patienten erstmals den Mechanismus einer sekundären Missense Mutation 15 Aminosäuren nach der kon- stitutionellen Mutation. Diese "kompensatorische" Mutation ist für die MMC- Resistenz der Zellinie verantwortlich. 4 von 5 der untersuchten Mosaik-Patienten zeigten eine eindeutige Verbesserung ihrer Blutwerte. Die Diagnose "Mosaizis-mus" verbessert offenbar die Prognose des Krankheitsbildes vor allem dann, wenn die Reversion eines Allels in einem frühen Stadium der Hämatopoiese auftritt. In Kapitel 6 berichten wir von zwei Mosaik-Patienten, bei denen untersucht wurde, wann in der Hämatopoiese die Reversion stattgefunden haben muss. Es konnte gezeigt werden, dass die Reversion in einer einzelnen hämatopoietischen Stammzelle erfolgte. Der Nachweis wurde durch die Isolierung einzelner Blutzell- typen, wie Granulozyten, Monozyten, T- und B-Zellen, aus dem peripheren Blut unserer Patienten sowie durch das Vorhandensein bzw. Nichtvorhanden- sein der Reversion in diesen Zellen geführt. Zum Vergleich wurden Hautfibrob- lasten herangezogen, da diese bei Mosaizismus im Blut nicht revertiert sind. In beiden Patienten trugen alle isolierten Blutzellen, nicht jedoch die Hautzellen, die Reversion. Dies und ein zusätzlicher Vergleich mit den zu diesem Zeit- punkt angestiegenen Erythrozyten- und Thrombozytenzahlen zeigten, dass die Reversion in einer einzigen hämatopoietischen Stammzelle stattgefunden haben muss. Dieser revertierten Stammzelle sind alle jeweils phänotypisch korrigierten Blutzellen zuzuschreiben, die dann die gesamte Hämatopoiese übernahmen und aufgrund eines in vivo Wachstumsvorteils sowie der erhöhten Apoptoserate der mutierten Zellen die Panzytopenie beider Patienten im Sinne einer "natürlichen" oder "spontanen" Gentherapie zur Ausheilung brachten.
3

Gentherapie bei Fanconi Anämie / gene therapy in fanconi anemia

Höfling, Christine January 2007 (has links) (PDF)
Unter Fanconi Anämie versteht man eine rezessiv vererbbare Multisystem-Erkrankung, die einhergeht mit erhöhter spontaner Chromosomenbrüchigkeit, sowie erhöhter Anfälligkeit für toxische Substanzen, wie Mitomycin C (MMC) oder Diepoxybutan (DEB).Gentherapeutische Versuche scheitern bei FA letztlich daran, dass bei fortgeschrittener aplastischer Anämie (= Knochenmarkversagen) die Gewinnung der zur erfolgreichen Transduktion erforderlichen Mengen an CD34 positiven Stamm-Blutzellen schwierig bis unmöglich ist. Die Fortschritte bei den Fremdspender-Transplantationen lassen erwarten, dass zukünftig nahezu alle FA-Patienten mit dieser Therapieform mit guten Erfolgsaussichten behandelt werden können. Insofern ist auch zu erwarten, dass die Option einer somatischen Gentherapie - trotz vielversprechenden Ergebnissen - zukünftig wieder an Bedeutung verlieren wird. / Fanconi anemia (FA) is an inherited autosomal recessive disease, which is accompanied by increased spontaneous chromosomal breackage, and increased susceptibility to DNA-crosslinking agents such as mitomycin C (MMC) or diepoxybutane (DEB).There are various treatment options to improve life expectancy and quality of life of Fanconi anemia patients. Therapeutic options include administration of androgens or growth factors, hematopoietic stem cell transplantation (HSCT), but also somatic gene therapy. Gene therapy experiments at FA fail in advanced aplastic anemia (bone marrow failure) because getting the necessary quantities of CD34 positive blood stem cells for successful transduction is difficult, if not impossible. With further improvements, HSCT will become the treatment of choice, even though this does not eliminate the life-long thread of solid tumors in FA-patients.
4

Genotyp-Phänotyp Korrelation bei Fanconi Anämie / Genotype-Phenotype Correlation of Fanconi Anemia

Höhn, Katharina January 2009 (has links) (PDF)
Die Fanconi Anämie (FA) stellt eine sowohl genetisch als auch phänotypisch äußerst heterogene, autosomal rezessiv und X-chromosomal vererbte Erkrankung dar. Sie ist gekennzeichnet durch chromosomale Instabilität, ein chronisch progredientes Knochenmarkversagen, multiple kongenitale Fehlbildungen und eine Prädisposition zu diversen Neoplasien. Auf zellulärer Ebene ist die FA durch eine erhöhte spontane Chromosomenbrüchigkeit sowie einer Hypersensitivität gegenüber DNA-schädigenden Agenzien charakterisiert. Bislang konnten 13 Komplementations-gruppen (FA-A bis FA-N) und ihre jeweiligen Gene identifiziert werden. Die FA-Proteine spielen eine wichtige Rolle bei der Reparatur von DNA-Doppelstrang-brüchen. Die breite genetische Heterogenität der Fanconi Anämie und die große Anzahl privater Mutationen, aufgrund derer kaum interindividuelle Vergleiche möglich sind, erschweren eine Genotyp-Phänotyp Korrelation ebenso wie der compound-heterozygote Mutationsstatus vieler FA-Patienten. Bisherige Untersuchungen weisen darauf hin, dass die Art der jeweiligen Mutation einen größeren Einfluß auf die phänotypische Ausprägung der Erkrankung hat als die Art des betroffenen Gens. Zusätzlich zeichnet die Fanconi Anämie eine große phänotypische Variabilität aus, die sich in höchst unterschiedlichen Krankheitsausprägungen und –verläufen äußert. Um aussagekräftige Genotyp-Phänotyp Korrelationen etablieren zu können, bedarf es einer ausreichenden Anzahl von FA-Patienten, bei denen sowohl die Komplementationsgruppe als auch die zugrunde liegende Mutation eindeutig definiert wurden. In der vorliegenden Arbeit wurden exemplarisch die Krankheitsverläufe einiger Patienten (4 x FA-A, 1 x FA-B, 3 x FA-C, 1 x FA-D2 und 2 x FA-G) analysiert und mit den jeweiligen molekulargenetischen Befunden korreliert. Im Anschluss daran wurden in der Literatur beschriebene Genotyp-Phänotyp Korrelationen erläutert, verschiedene Mechanismen der phänotypischen Variabilität dargestellt und abschließend prägnante Kasuistiken nochmals hervorgehoben. / Fanconi anemia (FA) is an autosomal recessive disorder that is defined by cellular hypersensitivity to DNA crosslinking agents, and is characterized by the variable presence of congenital malformations, progressive bone-marrow failure, and predisposition to leukemia and solid tumors. There are at least different 13 complementation groups. FA genes are thought to play an important role in the removal of DNA interstrand crosslinks. Genotype-phenotype correlations are further complicated by the obvious heterogeneity of the mutational spectrum within each FA gene, the private character of mutations and the high prevalence of compound heterozygosity. Studies so far indicate that the nature of the underlying mutation is more important than the underlying complementation group. Furthermore there is a wide variation of phenotypes. Clinical course and severity of FA vary strongly between and even within families. Any definite conclusion about genotype-phenotype correlation needs a sufficient number of FA patients whose underlying complementation group and mutation has been identified and whose clinical course has been analysed equally. The present dissertation represents a first step in this direction.
5

Konservierte transkriptionelle Regulationsmechanismen der Fanconi Anämie core complex Gene / Conserved regulatory mechanisms of the Fanconi anemia core complex genes

Meier, Daniel January 2011 (has links) (PDF)
Fanconi Anämie (FA) ist eine autosomal rezessive, im Falle der Untergruppe FA-B X-chromosomale Erbkrankheit, die mit chromosomaler und genomischer Instabilität verbunden ist und sich durch große phänotypische und genetische Heterogenität auszeichnet. Symptomatisch sind Knochenmarksversagen, eine Vielfalt angeborener Fehlbildungen, die weit überdurchschnittliche Disposition für akute myeloische Leukämie (AML), Plattenepithelkarzinome (SCC) sowie eine zelluläre Hypersensitivität gegenüber DNA Doppelstrangvernetzenden Substanzen. FA wird kompliziert durch ein progressives Knochenmarksversagen. Die FA Proteine sind essentiell für die interstrand crosslink (ICL) repair sowie an anderen DNA Reparatursystemen, beteiligt. Bisher wurden hauptsächlich Regulationsmechanismen untersucht, die die FA Proteine betreffen. Die Regulation der Transkripte war bisher nahezu unbekannt. In der vorliegenden Arbeit wurde die transkriptionelle Regulation der sogenannten FA core complex Gene untersucht. Dabei handelt es sich um acht Gene, deren Produkte im Falle eines DNA Schadens den ersten Proteinkomplex des FA/BRCA Signalweges bilden. Für diese acht Gene wurden in dieser Arbeit die Promotoren identifiziert und ihr Aktivierungspotential charakterisiert. Dabei stellte sich heraus, dass diese ein starkes Potential für die Transkriptionsinitiierung besitzen. Des Weiteren zeigten sich Gemeinsamkeiten in Form von Sequenzmotiven sowie Transkriptionsfaktorbindestellen, die in allen core complex Genen nahezu identisch waren. Durch diese Analysen ergaben sich Hinweise, dass die untersuchten Gene durch Mitglieder des JAK/ STAT (STAT1/4) sowie des TGF-b Signalwegs (SMAD1/4) reguliert werden. Funktionelle Untersuchungen mittels siRNA sowie Fibroblastenzelllinen, die biallelische FANCA Mutationen trugen, bestätigten diese Verbindungen. So hatte der knockdown der entsprechenden Transkriptionsfaktoren einen reduzierenden Einfluss auf die Transkriptmenge der core complex Gene. FANCA-mutierte Zelllinen weisen reduzierte mRNAs von STAT und SMAD auf. Darüber hinaus fanden sich signifikante Änderungen der Transkriptmenge in 112 verschiedenen Mitgliedern dieser Signalwege in den FA-A Zellinien. Eines dieser Mitglieder, IRF1, zeigte fast identische Ergebnisse wie sie bei STAT1/4 sowie SMAD1/4 beobachtet werden konnten. Die vorliegende Arbeit trägt dazu bei, die transkriptionelle Regulation der core complex Gene besser zu verstehen. Die auffälligen Gemeinsamkeiten ihrer Regulation liefern neue Argumente für eine Koevolution dieser Gene. / Fanconi anemia (FA) is an autosomal recessive, in the case of subgroup B X-linked, disease that is characterized by chromosomal and genomic instability. FA reveals remarkable phenotypic and genetic heterogeneity. Clinical symptoms include the variable presence of typical congenital malformations, progressive bone marrow failure, and a pronounced predisposition for the occurrence of malignancies such as acute myelogenous leukemia (AML) and squamous cell carcinoma (SCC). The FA proteins are essential for the repair of DNA-interstrand crosslinks and are members of the DNA damage response network. This is why FA cells are hypersensitive to agents inducing doublestrand lesions. In the past, a major topic of research was the interaction of the FA proteins. In this thesis work, transcriptional regulation of the FA core complex genes was investigated. These genes include eight members that form, in response to DNA damage, the first protein complex acting in the FA/BRCA pathway. As part of this thesis, the promoters of the FA core complex genes were identified, and their potential for transcriptional activation was studied. All of them revealed strong power for transcriptional activation. There were marked similarities among them including the presence of two shared sequence motifs, of transcription factor binding sites and in the presence of repressor elements defining them as bipartite in their nature. These analyses provided clues that these genes are regulated, in part, by components of theJAK/ STAT (STAT1/4) and the TGF-ß signaling pathways. Functional studies including knockdown experiments or using fibroblast lines with biallelic mutations in FANCA confirmed these connections. Down-regulation of the designated transcription factors decreased the transcript levels of the FA core complex genes. Likewise, FANCA-mutant cell lines showed reduced amounts of mRNA of STAT and SMAD. Moreover, there were significant changes in the expression of 112 members of the corresponding signaling pathways in FA-A cell lines. The present work contributes to a better overall understanding of the transcriptional regulation of the FA core complex genes. Shared similarities provide arguments in favor of a co-evolution of these genes.
6

The Intricate Network of Replication-dependent Interstrand Crosslink DNA Repair / Das komplexe Netzwerk der replikationsabhängigen Reparatur von DNA-Quervernetzungen

Rohleder, Florian January 2014 (has links) (PDF)
The Fanconi anemia (FA) pathway is a replication-dependent DNA repair mechanism which is essential for the removal of interstrand crosslink (ICL) DNA damages in higher eukaryotes (Moldovan and D’Andrea, 2009). Malfunctions in this highly regulated repair network lead to genome instability (Deans and West, 2011). Pathological phenotypes of the disease FA which is caused by mutations in the eponymous pathway are very heterogeneous, involving congenital abnormalities, bone-marrow failure, cancer predisposition and infertility (Auerbach, 2009). The FA pathway comprises a complex interaction network and to date 16 FA complementation groups and associated factors have been identified (Kottemann and Smogorzewska, 2013). Additionally, components of nucleotide excision repair (NER), homologous recombination repair (HRR), and translesion synthesis (TLS) are involved and coordinated by the FA proteins (Niedzwiedz et al., 2004; Knipscheer et al., 2009). One of the FA proteins is the DEAH helicase FANCM. In complex with its binding partners FAAP24 and MHF1/2 it binds the stalled replication fork and activates the FA damage response (Wang et al., 2013). However, the exact steps towards removal of the ICL damage still remain elusive. To decipher the underlying process of FA initiation by FANCM, this thesis mainly focuses on the archaeal FANCM homolog helicase-associated endonuclease for fork-structured DNA (Hef). Hef from the archaeal organism Thermoplasma acidophilum (taHef) differs from other archaeal Hef proteins and exclusively comprises an N-terminal helicase entity with two RecA and a thumb-like domain while others additionally contain a nuclease portion at the C-terminus. I solved the crystal structure of full-length taHef at a resolution of 2.43 Å. In contrast to the crystal structure of the helicase domain of Hef from Pyrococcus furiosus (pfHef), taHef exhibits an extremely open conformation (Nishino et al., 2005b) which implies that a domain movement of the RecA-like helicase motor domains of 61° is possible thus highlighting the flexibility of helicases which is required to translocate along the DNA. However, small-angle x-ray scattering (SAXS) measurements confirm an intermediate conformation of taHef in solution indicating that both crystal structures represent rather edge states. Most importantly, proliferating cell nuclear antigen (PCNA) was identified as an interaction partner of Hef. This interaction is mediated by a highly conserved canonical PCNA interacting peptide (PIP) motif. Intriguingly, the presence of PCNA does not alter the ATPase nor the helicase activity of taHef, thus suggesting that the interaction is entirely dedicated to recruit taHef to the replication fork to fulfill its function. Due to a high level of flexibility the taHef-taPCNA complex could not be crystallized and therefore SAXS was utilized to determine a low-resolution model of this quaternary structure. This newly discovered PCNA interaction could also be validated for the eukaryotic FANCM homolog Mph1 from the thermophilic fungus Chaetomium thermophilum (ctMph1). As the first step towards the characterization of this interaction I solved the crystal structure of PCNA from Chaetomium thermophilum (ctPCNA). Furthermore, it was possible to achieve preliminary results on the putative interaction between the human proteins FANCM and PCNA (hsFANCM, hsPCNA). In collaboration with Detlev Schindler (Human Genetics, Würzburg) and Weidong Wang (National Institute on Aging, Baltimore, USA) co-immunoprecipitation (CoIP) experiments were performed using hsFANCM and hsPCNA expressed in HEK293 cells. Although an interaction was reproducibly observed in hydroxyurea stimulated cells further experiments and optimization procedures are required and ongoing. / Der Fanconi Anämie (FA) Signalweg ist ein replikationsabhängiger DNA-Reparaturmechanismus, der grundlegend zur Beseitigung von DNA-Schäden in Form von intermolekularen Quervernetzungen (ICL) beiträgt (Moldovan and D’Andrea, 2009). Fehlfunktionen in diesem stringent regulierten Reparaturnetzwerk führen somit zu Genominstabilität (Deans and West, 2011). Der pathologische Phänotyp der Krankheit FA, die durch Mutationen in dem gleichnamigen DNA-Reparatur Signalweg verursacht wird, ist sehr heterogen und umfasst angeborene Deformationen, Knochenmarksversagen, eine erhöhte Tumor Disposition sowie Infertilität (Auerbach, 2009). Der FA Mechanismus ist ein komplexes Netzwerk und bisher wurden 16 FA Komplementationsgruppen sowie weitere beteiligte Faktoren identifiziert (Kottemann and Smogorzewska, 2013). Zusätzlich sind Komponenten der Nukleotid-Exzisionsreparatur (NER), der homologen Rekombinationsreparatur (HRR) und Transläsionssynthese (TLS) involviert, die durch FA Proteine koordiniert werden (Niedzwiedz et al., 2004; Knipscheer et al., 2009). Eines der FA Proteine ist die DEAH Helikase FANCM. Im Komplex mit seinen Interaktionspartnern FAAP24 und MHF1/2 bindet FANCM an die durch den ICL Schaden zum Stillstand gekommene Replikationsgabel und aktiviert die FA Schadensantwort (Wang et al., 2013). Die weiteren Schritte, die zur Entfernung des ICL Schadens führen, sind jedoch weitestgehend ungeklärt. Zur Aufklärung der Initiation des FA Mechanismus und der Rolle, die das FANCM dabei spielt, wurde in dieser Arbeit hauptsächlich das archaische FANCM Homolog Helicase-associated Endonuclease for Fork-structured DNA (Hef) analysiert. Hef aus dem archaischen Organismus Thermoplasma acidophilum (taHef) unterscheidet sich von anderen archaischen Hef Proteinen und besteht ausschließlich aus einem N-terminalen Helikase-Abschnitt mit zwei RecA und einer thumb-like Domäne, während andere Hef Proteine am C-Terminus zusätzlich eine Nuklease-Domäne besitzen. Ich habe die Kristallstruktur des taHef Proteins bei einer Auflösung von 2,43 Å gelöst. Im Gegensatz zur Kristallstruktur eines vergleichbaren Hef-Konstruktes aus Pyrococcus furiosus (pfHef) (Nishino et al., 2005b) liegt in taHef eine extrem offene Konformation der beiden RecA-Domänen vor, was impliziert, dass eine Bewegung der RecA-ähnlichen Helikase Motordomänen um 61° möglich ist und zudem die zur Translokation entlang der DNA notwendige Flexibilität von Helikasen verdeutlicht. Messungen mittels Kleinwinkelröntgenstreuung (SAXS) deuten hingegen auf eine intermediäre Konformation des taHef Proteins in Lösung hin, wodurch beide Kristallstrukturen als eher Randzustände angesehen werden können. Besonders hervorzuheben ist, dass das Protein Proliferating Cell Nuclear Antigen (PCNA) als Hef Interaktionspartner identifiziert wurde. Diese Interaktion wird durch ein hoch-konserviertes kanonisches PCNA Interaktionspeptid-Motiv vermittelt. Interessanterweise beeinflusst PCNA aber weder die ATPase noch die Helikase Aktivität von taHef, was darauf hindeutet, dass diese Interaktion nur zur Rekrutierung des Hef Proteins zur Replikationsgabel dient. Wegen des hohen Maßes an Flexibilität konnte der taHef-taPCNA Komplex nicht kristallisiert werden, wohingegen SAXS Messungen erfolgreich waren und ein Model bei niedriger Auflösung konnte erhalten werden. Diese nachgewiesene Interaktion zwischen Hef und PCNA konnte auch für das eukaryotische FANCM Homolog Mph1 aus dem thermophilen Pilz Chaetomium thermophilum (ctMph1) bestätigt werden. Als ersten Schritt zur Charakterisierung dieser Interaktion habe ich die Kristallstruktur von PCNA aus Chaetomium thermophilum (ctPCNA) gelöst. Weiterhin war es möglich, vorläufige Resultate bezüglich der mutmaßlichen Interaktion zwischen den humanen Proteinen FANCM und PCNA (hsFANCM, hsPCNA) zu erhalten. In Kooperation mit Detlev Schindler (Humangenetik, Würzburg) und Weidong Wang (National Institute on Aging, Baltimore, USA) wurden Co-Immunopräzipitations-Experimente (CoIP) mit humanem FANCM und humanem PCNA aus HEK293-Zellen durchgeführt. Obwohl eine Interaktion in Hydroxyurea-stimulierten Zellen reproduzierbar nachgewiesen werden konnte, sind weitere Experimente notwendig, um diese Interaktion zu charakterisieren.
7

Neue Fanconi-Anämie-Gene als Wächter des Genoms / New Fanconi anemia genes as guardians of the genome

Knies, Kerstin January 2018 (has links) (PDF)
Fanconi Anämie (FA) gehört zu den seltenen Chromsomeninstabilitäts-Syndromen. Ursächlich für die Erkrankung sind biallelische Mutationen mit autosomal rezessiver Vererbung in einem der bisher bekannten 21 Genen (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U und –V). Eine Ausnahme stellen FANCB und FANCS dar, die X-chromosomal rezessiv bzw. mit einem dominant negativen Effekt vererbt werden. Die Genprodukte sind als Teil des FA/BRCA-DNA-Reparatur Netzwerks bei der Beseitigung von DNA-Interstrang-Quervernetzungen (ICL) involviert. ICLs führen zu einer Stagnation der Replikationsgabel und blockieren somit wichtige zelluläre Prozesse wie Replikation und Transkription, sodass eine Aufrechterhaltung der Genomstabilität nicht mehr gewährleistet ist. FA ist gekennzeichnet durch angeborene Fehlbildungen, fortschreitendes Knochenmarkversagen und eine erhöhte Prädisposition gegenüber Krebserkrankungen. Die Diagnose basiert auf phänotypischen Auffälligkeiten und wird auf zellulärer Ebene durch die Hypersensititvät gegenüber DNA-quervernetzenden Substanzen wie Mitomycin C (MMC) bestätigt. Da nicht jeder Patient einer bisher bekannten Komplementationsgruppe zugeordnet werden kann und herkömmliche molekulare Diagnostikverfahren mit der steigenden Anzahl an FA-Genen mühsam, zeitaufwändig und teuer geworden sind, war es nötig, neue molekulare Verfahren wie Whole Exome Sequencing (WES) zu etablieren. Im Rahmen dieser Arbeit wurde das Potential dieser Methode im Bezug auf die FA-Genotypisierung erforscht. Bei der Suche nach einer optimalen Anwendung des WES, untersuchten wir verschiedene Anreicherungs- und Sequenziertechniken. Dennoch führen Fehler in den Datenbanken sowie Pseudogene zu falschen Dateninterpretationen und –darstellungen und stellen somit eine Herausforderung dar. Trotzdem zeigen unserer Daten, dass WES eine wertvolle Methode in der Molekulardiagnostik von FA ist. Dies bestätigte sich durch die Zuordnung mehrerer, vorher unklassifizierter FA-Patienten zu den bekannten Komplementationsgruppen und der Ergänzung eines siebten Patienten zum Subtyp FA-P, im Rahmen von zwei Next Generation Sequencing (NGS) Publikationen. Außerdem wurden mit Hilfe von WES zwei neue FA-Gene (FANCQ und FANCW) im Rahmen dieser Arbeit gefunden, wobei XPF (FANCQ) das erste Gen überhaupt war, welches anhand von NGS detektiert wurde. ERCC4/XPF ist eine strukturspezifische Endonuklease, die durch ein Gen kodiert wird, welches bereits vorher mit den Krankheiten Xeroderma Pigmentosum (XP) und dem segmentalen XFE progeroid Syndrom in Verbindung gebracht wurde. Unsere Daten zeigen, dass abhängig von der Mutation in XPF, Patienten eine der drei unterschiedlichen Funktionsstörungen aufweisen. Dies hebt die multifunktionale Stellung der XPF Endonuklease im Rahmen der Genomstabilität und von humanen Erkrankungen hervor. Das zweite Gen, das während dieser Arbeit entdeckt wurde, ist die WD40-Domäne tragende E3 Ubiquitin Ligase RFWD3, die kürzlich mit DNA Reparatur und insbesondere HR verknüpft wurde. Wir konnten zeigen, dass eine RFWD3 Mutation in der WD40-Domäne bei einem FA-Patienten mit der genetischen Erkrankung Fanconi Anämie assoziiert ist. Die HR ist in RFWD3 (FANCW) mutierten Zellen gestört, was auf einer verminderten Relokalisation von mutiertem RFWD3 an das Chromatin und einer defekten Interaktion mit RPA beruht. Des Weiteren weisen Rfwd3 defiziente Mäuse typische Merkmale anderer FA-Mausmodelle auf, wie verminderte Fertilität, ovarielle und testikuläre Atrophie sowie eine reduzierte Lebenserwartung. Insgesamt zeigt diese Arbeit, dass neue molekulare Ansätze wie NGS ein wertvolles Hilfsmittel in der FA-Diagnostik sind um bisher unklassifizierte Patienten einer Komplementationsgruppe zuordnen zu können. Zudem konnten mit Hilfe dieser Technik zwei neue Gene identifiziert werden. Deren Charakterisierung trägt zu einer Vervollständigung und weiteren Aufklärung des FA/BRCA-DNA-Reparatur-Netzwerks bei. / Fanconi anemia (FA) is a rare genomic instability syndrome. Biallelic mutations are disease causing in any one of at least 21 genes (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U and -V). All are inherited in an autosomal recessive way, except FANCB and FANCS, which are inherited in a X-chromosomal recessive and a dominant negative way, respectively. The gene products are involved in the FA/BRCA DNA damage response pathway to remove interstrand-crosslinks (ICL). ICLs cause stalled replication forks and hence block crucial cellular processes like replication and transcription resulting in decreased maintenance of genome stability. FA is characterized by congenital malformations, progressive bone marrow failure (BMF), and susceptibility to malignancies. Patients are diagnosed based upon phenotypical manifestations and the diagnosis of FA is confirmed by the hypersensitivity of cells to DNA interstrand crosslinking agents such as Mitomycin C (MMC). Since not every patient can be assigned to a complementation group and customary molecular diagnostics has become increasingly cumbersome, time-consuming and expensive the more FA genes have been identified new molecular approaches like Whole Exome Sequencing (WES) has been established. The potential of this method for FA genotyping has been investigated in the context of this thesis. By exploring different enrichment and sequencing techniques, we were able to identify the pathogenic mutations in each case using WES. However, database errors and pseudogenes pose challenges to interpret data correctly. Nevertheless our results show that WES is a valuable tool for molecular diagnosis of FA, since we were able to assign several previously unclassified FA patients to known complementation groups in the framework of two Next Generation Sequencing (NGS) studies. In addition WES revealed two new FA-genes, XPF and RFWD3. Extraordinarily, XPF (FANCQ) is the first gene to be detected with NGS. ERCC4/XPF is a structure specific nuclease - encoding a gene previously connected to xeroderma pigmentosum (XP) and segmental XFE progeroid syndrome. Depending on the type of ERCC4 mutation individuals present with one of the three clinically distinct disorders highlighting the multifunctional nature of the XPF endonuclease in genome stability and human disease. The second gene identified within this thesis is the WD40-containing E3 ubiquitin ligase RFWD3, which has been recently linked to the repair of DNA damage by Homologous Recombination (HR). Here, we show that an RFWD3 mutation within the WD40 domain of a patient with typical FA malformations is connected to the genetic disease Fanconi anemia (FA). Disordered HR is the result of depleted relocation of mutant RFWD3 to chromatin and defective physical interaction with RPA. In addition, Rfwd3 knockout mice show ovarian and testicular atrophy, a reduced life span and pups with sub-Mendelian birth ratios indicating embryonal-lethality. These features resemble other FA mouse models. In summary, this work showed that new molecular approaches like WES are valuable tools for FA diagnosis. Additionally, this method is a useful medium to assign FA patients to so far unknown complementation groups. Two novel genes have been identified and contribute to further completion of the FA/BRCA DNA repair network in the context of genome stability.
8

Caretaker-Gen-Syndrome / Caretaker gene syndromes

Sobeck, Alexandra January 2001 (has links) (PDF)
Ataxia telangiectasia: Identifizierung und Charakterisierung nicht-konservativer Spleißmutationen und deren Auswirkungen im ATM-Gen. Ein hoher Anteil der bisher im ATM-Gen identifizierten Mutationen (>350, www.vmresearch.org/atm.htm) stellt Deletionen oder Insertionen direkt an den Exongrenzen dar; viele dieser Aberrationen wurden allerdings nur auf cDNA-Ebene detektiert. Sollte es sich hierbei in den meisten Fällen um Mutationen an den Spleiß-Konsensussequenzen handeln, läge der Anteil der Spleißmutationen im ATM-Gen beträchtlich höher (~35 Prozent) als in anderen betroffenen Genen (~15 Prozent). Um der Frage nachzugehen, ob im ATM-Primärtranskript aufgrund einer erhöhten Labilität gegenüber Spleißmutationen auch Veränderungen weniger konservierter Positionen innerhalb der Donor- oder Akzeptor-Spleißstellen zu aberrantem Spleißen führen, wurden 20 AT-Zellinien mittels „Protein Truncation Test“ nach Deletionen oder Insertionen an den Exongrenzen durchsucht. Die 7 neu identifizierten Spleißmutationen wurden anschließend unter Verwendung eines „Splice Scoring“- Systems näher charakterisiert, die Penetranz der jeweiligen Mutation durch semiquantitative PCR evaluiert und die Auswirkungen auf Proteinebene durch Western Blotting überprüft. Obwohl nur eine der 7 neu identifizierten Spleißmutationen eine schwächer konservierte Position der Spleißsequenzen betraf, konnten im Rahmen einer Kooperation mit der Medizinischen Hochschule Hannover (Arbeitsgruppe Dr. T. Dörk) weitere Spleißmutationen an den Intronpositionen +3, +5 und -6 identifiziert werden, die ebenfalls in völlig aberrantem Spleißen resultieren. Daten weiterer Arbeitsgruppen lassen vermuten, daß tatsächlich ~ 50 Prozent aller Spleißaberrationen im ATM-Gen auf Mutationen außerhalb der konservierten Dinukleotidbereiche (gt und ag) zurückführen sind. Nijmegen Breakage Syndrom (NBS): Suche nach Genen, die einen NBS-ähnlichen Phänotyp auslösen. Über 90 Prozent aller NBS-Patienten tragen Mutationen im NBS1-Gen, dessen Translationsprodukt im Komplex mit MRE11 und RAD50 eine zentrale Rolle in DNA-DSB-Reparatur und Zellzykluskontrolle spielt. Weitere Mutationen bei Patienten mit NBS-ähnlichem Phänotyp wurden im Gen der DNA-Ligase IV identifiziert, die zusammen mit weiteren Angehörigen des NHEJ-Reparaturweges (XRCC4, DNA-PKcs, Ku70, Ku80) ebenfalls in DNA-DSB-Reparatur involviert ist. Zellen von Patienten mit NBS-ähnlichem Phänotyp wurden daher durch direkte Sequenzierung und/oder Western Blotting auf Defekte in den oben genannten Genen/Proteinen untersucht. In einem parallel durchgeführten unabhängigen Mutationsscreening (Medizinische Hochschule Hannover, Arbeitsgruppe Dr. T. Dörk) wurden in Fibroblasten einer Patientin mit NBS-ähnlichem Phänotyp Mutationen im RAD50-Gen identifiziert. Die Auswirkungen der RAD50-Defizienz auf die zelluläre Lokalisation der beiden Komplexpartner NBS1 und MRE11 sowie deren Fähigkeit zur Focibildung nach DNA-Schädigung wurde im Rahmen dieser Arbeit durch Immunfluoreszenzstudien untersucht: während NBS1 vorwiegend nukleäre Lokalisation aufwies, war MRE11 zu etwa gleichen Anteilen zwischen Nukleus und Zytoplasma verteilt; beide Proteine waren nach Bestrahlung der Zellen nicht mehr zur Focibildung fähig. Da in MRE11-defizienten Zellen keine nukleäre NBS1-Lokalisation beobachtet wird, scheint der Kerntransport des NBS1 von funktionellem MRE11, nicht aber von RAD50 abhängig zu sein. Fanconi Anämie (FA): Untersuchung einer möglichen Verbindung zwischen den FA-Proteinen und der RAD51-Familie. FA-Zellen aller bisher bekannter Komplementationsgruppen zeichnen sich durch Hypersensitivität gegenüber DNA-„interstrand crosslinks“ (ICLs) aus, zu deren Behebung u.a. die homologe Rekombinationsreparatur (HRR) eingesetzt wird, bei der das RAD51(A)-Protein eine zentrale Rolle spielt. Aufgrund schwacher Homologien werden 5 weitere Proteine (RAD51B, C, D, XRCC2 und 3) der RAD51-Familie zugeordnet. Da Knockout-Zellinien aller RAD51-Familienmitglieder ebenfalls hohe Sensitivität gegenüber ICLs aufweisen, wurde eine mögliche Verbindung zwischen den FA-Proteinen FANCA, C, G und der RAD51-Familie getestet. Unter Verwendung des "Yeast Two Hybrid" (Y2H)-Systems konnten zunächst mehrere Interaktionen zwischen FA- und RAD51-Proteinen detektiert werden. Zur Bestätigung einer funktionellen Verbindung wurden die FA- und RAD51-Proteine in humanen 293-Zellen überexprimiert. Aufgrund der focibildenden Eigenschaften des RAD51-Proteins wurden die FA-Proteine und die RAD51-Familie auf Focibildung nach DNA-Schädigung sowie etwaige Kolokalisationen getestet; mögliche physikalische Interaktionen wurden durch Koimmunpräzipitationsstudien überprüft. Die RAD51-Familie zeigten keinerlei Focibildung nach DNA-Schädigung während die FA-Proteine in einigen Experimenten eine Lokalisation in nukleäre Foci zeigten, die sich jedoch in Größe und Homogenität deutlich von denen klassischer DNA-Reparaturfoci unterschieden und nicht mit RAD51 kolokalisierten. Die häufige Beschränkung der FA-Foci auf Bereiche besonders dicht gepackten Chromatins kann möglicherweise als weiterer Hinweis auf die postulierte Rolle der FA-Proteine bei Chromatin Remodelling Mechanismen interpretiert werden. Bei Überexpression in HEK293-Zellen konnte keine der im Y2H-System identifizierten Interaktionen zwischen FA- und RAD51-Proteinen durch Koimmunpräzipitationen detektiert werden. Dennoch erscheinen seit der Identifizierung des FANCD2, das durch den FA-Komplex aktiviert wird und mit dem RAD51-Interaktor BRCA1 in nukleäre Foci kolokalisiert, weitere Untersuchungen einer Verknüpfung der FA-Proteine mit den Angehörigen des HRR-Weges durchaus sinnvoll. / Ataxia telangiectasia: Identification and characterization of mutations at non-conserved splice positions within the ATM gene. Since the identification of ATM, more than 350 different mutations have been identified (www.vmresearch.org/atm.htm) with an unusual frequency of exon skipping or deletions/insertions at the exon boundaries. Although in many studies only the observed aberrations in cDNA were reported, they presumably represent splice mutations. These findings suggest that the rate of splicing defects in the ATM gene may be substantially higher than that reported for other human genetic disorders. In order to investigate this phenomenon, we have asked the question whether the high frequency of splice mutations in the ATM gene might be caused by an increased liability of the ATM transcript towards mutations at less conserved positions within the splice site consensus sequences. Mutation screening of 20 AT cell lines using the protein truncation test revealed 10 different splice mutations, seven of which had not been reported previously. A splice scoring system was used to estimate the penetrance of each mutation. Potentially leaky splicing was evaluated by semiquantitative PCR. The implications of each mutation on the protein level were investigated by western blotting. One out of seven new splice mutations was positioned at a less conserved consensus site. Furthermore, in cooperation with the Medizinische Hochschule Hannover (group of Dr. T. Doerk), point mutations at intron positions +3, +5 and –6 were identified, each resulting in completely aberrant splicing. In addition, there is accumulating evidence from other studies that indeed ~50 per cent of splice mutations in the ATM gene are positioned outside the highly conserved donor or acceptor dinucleotides, gt or ag, respectively. Nijmegen breakage syndrome (NBS): Search for genetic defects resulting in an NBS- or NBS-like phenotype. More than 90 per cent of NBS patients carry mutations in the NBS1 gene. The NBS1 protein, in a complex with MRE11 and RAD50, is known to be involved in DNA DSB repair via NHEJ and cell cycle control. In cells from patients with an NBS-like phenotype, defects in another component of the NHEJ pathway, DNA ligase IV, have been identified very recently. Therefore, mutation screening in genes known to be involved in NHEJ (NBS1, MRE11, RAD50, DNA ligase IV, XRCC4, DNA-PKcs, Ku70, Ku80) was carried out in cell lines from NBS-like patients using direct sequencing and/or western blotting. In one of these cell lines, an independently performed screening at the Medizinische Hochschule Hannover (group of Dr. T. Doerk) revealed two mutant alleles of the RAD50 gene. In the present work, the cellular RAD50-deficient phenotype was characterized in response to induced DNA damage. In contrast to normal controls, the RAD50-deficient fibroblasts were not able to form IR-induced foci. Localization of NBS1 was still predominantly nuclear, whereas MRE11 was distributed equally between nucleus and cytoplasm. In contrast, MRE11-deficient cells do not show much nuclear localization for NBS1, suggesting that the nuclear localization of NBS1 depends on functional MRE11, but not on the presence of RAD50. Fanconi anemia (FA): Are the FA proteins linked to DNA DSB repair via the RAD51 family? FA cells of all complementation groups are hypersensitive towards DNA interstrand crosslinks (ICLs). Removal of ICLs includes the generation of a DNA DSB. Their repair is then presumably carried out by the homologous recombination (HRR) pathway, an essential component of which is the RAD51 protein. Due to weak homologies five other proteins have been assigned to the RAD51 family (RAD51B, C, D, XRCC2 and 3). Strikingly, knockout mutants of all RAD51 paralogs also show high sensitivity to ICL-inducing agents. In order to investigate a possible connection between the FA pathway and the RAD51 family, the yeast two-hybrid system was used to test for any interactions between the FA proteins FANCA, C, G and the RAD51 family members. Several interactions were detected. Further characterization was done by study of nuclear foci and immunoprecipitation. FA and RAD51 proteins were overexpressed in human 293 cells. Since RAD51 localizes into nuclear foci after DNA damage, FA proteins and RAD51 paralogs were tested for their ability to (co-) localize into nuclear foci after MMC-treatment. Whereas none of the RAD51 paralogs showed nuclear foci formation, in some experiments FA proteins moved into nuclear speckles following DNA damage. However, size and homogeneity of DNA damage-induced FA speckles was quite different from those formed by „classical“ DNA repair proteins; in addition, no colocalization was seen with foci containing RAD51. Notably, FA speckles were often restricted to sites of very tightly packed chromatin, again suggesting a role of the FA-proteins in chromatin remodelling mechanisms. To identify any physical interaction between FA proteins and the RAD51 family, coimmunoprecipitation studies (Co-IPs) were carried out, after overexpression in HEK293 cells. Whereas the reported interaction between FANCA and FANCG could repeatedly be shown, no Co-IP was detected for any combination of an FA protein with a member of the RAD51 family. However, since the identification of FANCD2, a connection between the FA pathway and RAD51 seems all the more plausible: following DNA damage FANCD2 colocalizes with BRCA1, which itself is closely associated with RAD51. Further studies will be necessary in order to unravel the way by which the FA proteins might interact with conserved DNA repair mechanisms like the HRR pathway.
9

Gezielte Anreicherungs- und neue DNA-Sequenzierungsstrategien für die molekulare Analyse von Fanconi-Anämie-Genen / Targeted enrichment and novel DNA sequencing strategies for the molecular analysis of fanconi anemia genes

Rost, Isabell January 2020 (has links) (PDF)
Fanconi-Anämie (FA) ist, mit Ausnahme von Mutationen in FANCR/RAD51, eine autosomal-rezessive oder X-chromosomal vererbte Krankheit, die sich durch eine ausgesprochene klinische als auch genetische Heterogenität auszeichnet. Neben einem fortschreitenden Knochenmarksversagen zählen zu den typischen Merkmalen eine Vielzahl an angeborenen Fehlbildungen, wie beispielsweise Radialstrahlanomalien, Minderwuchs oder Pigmentierungsstörungen. Zudem besteht für FA-Patienten ein überdurchschnittlich hohes Risiko bereits in jungen Jahren an akuter myeloischer Leukämie oder soliden Tumoren zu erkranken. Bislang konnten in 21 FA-Genen (FANCA, -B, -C, - D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U oder -V) krankheitsverursachende Mutationen identifiziert werden, deren Proteinprodukte maßgeblich an der Aufrechterhaltung der Genomstabilität beteiligt sind und Komponenten des FA/BRCA-DNA-Reparaturweges darstellen. In der klassischen FA-Mutationsanalyse kommen meist Sanger-Sequenzierungen sowie MLPA- und Immunblot-Analysen zum Einsatz. Da im Wesentlichen keine Genotyp-Phänotyp-Korrelation besteht, gestaltet sich, gerade bei seltenen FA-Komplementationsgruppen, der Nachweis von krankheitsverursachenden Mutationen oftmals sehr zeit- und kostenintensiv. Während der letzten Jahre wurden verschiedene Strategien zur Anreicherung und Sequenzierung entwickelt, welche die parallele Sequenzanalyse einzelner ausgewählter Gene, ganzer Exome oder sogar des gesamten Genoms und somit eine kosten- und zeiteffiziente Mutationsanalyse ermöglichen. In der vorliegenden Arbeit wurden unterschiedliche Anreicherungsmethoden mit anschließender Hochdurchsatzsequenzierung auf ihre Anwendbarkeit in der molekulargenetischen FA-Diagnostik getestet, um klassische Mutationsanalyse-Methoden zu ergänzen oder möglicherweise sogar ganz ersetzen zu können. Der erste Teil der Arbeit befasste sich mit der Etablierung eines FA-spezifischen Genpanels zur Genotypisierung von FA-Patienten. Nachdem die Methode zunächst anhand von FA-Patienten mit bekannten Mutationen optimiert werden musste, erwies sie sich als effizienter Ansatz zum Nachweis krankheitsverursachender Mutationen bei FA-Patienten unbekannter Komplementationsgruppe. Durch die FA-Panelanalyse konnten 37 von 47 unklassifizierten Patienten einer FA-Komplementationsgruppe zugeordnet werden, indem deren kausalen Mutationen bestimmt wurden. In einem weiteren Ansatz sollte die Anwendbarkeit eines kommerziellen Anreicherungspanels zur FA-Diagnostik untersucht werden. Auch hier konnte ein Großteil der krankheitsverursachenden Mutationen von fünf bekannten wie auch 13 nicht zugeordneten FA-Patienten detektiert und somit eine molekulargenetische Diagnose bei neun weiteren, zuvor unklassifizierten FA-Patienten, gestellt werden. Ferner wurden sechs ausgewählte Patienten, zusätzlich zur Panelanreicherung, per Exomanalyse untersucht. Zum einen konnten Mutationen in bekannten FA-Genen bestätigt oder neu identifiziert werden. Zum anderen wurden auch potentiell pathogene Mutationen in DNA-Reparaturgenen außerhalb des FA/BRCA-Signalweges bei zwei Patienten mit unbestätigter Verdachtsdiagnose FA verifiziert. So wurde bei mehreren Mitgliedern einer Familie mit unterschiedlichen Tumorerkrankungen eine zuvor unbeschriebene homozygote Nonsense-Mutation in der BER-Glykosylase NTHL1 nachgewiesen, für welche bislang erst zwei pathogene Mutationen als Auslöser eines neuen Krebssyndroms bekannt sind. Bei einem weiteren Patienten wurden compound-heterozygote Mutationen in RPA1 detektiert, ein Gen für das bislang noch kein Krankheitsbild bekannt ist. Mit Hilfe der drei verschiedenen Anreicherungsstrategien konnten insgesamt 47 von 60 unklassifizierten FA-Patienten 13 verschiedenen Komplementationsgruppen eindeutig zugeordnet werden. Es zeigte sich dabei ein breites Spektrum an neuen, bislang unbeschriebenen FA-Mutationen. Den größten Anteil an der Gesamtzahl der nachgewiesenen Mutationen hatten Spleißmutationen, die auf eine Auswirkung auf das kanonische Spleißmuster untersucht wurden, um einen pathogenen Effekt nachweisen zu können. Weiterhin schloss die Arbeit die Charakterisierung einzelner FA-Patienten bzw. Komplementationsgruppen mit ein. Dazu zählen die seltenen Untergruppen FA-T und FA-Q, für die jeweils ein neuer Patient identifiziert werden konnte. Durch die funktionelle Charakterisierung der dritten jemals beschriebenen FA-Q-Patientin konnten Einblicke in das Zusammenspiel der Reparatur von DNA-Quervernetzungen und der Nukleotidexzisionsreparatur gewonnen und die phänotypische Variabilität von FA durch die subjektive als auch zelluläre UV-Sensitivität der Patientin ergänzt werden. Darüber hinaus konnte das Mutationsspektrum in FA-I sowie FA-D2 erweitert werden. Eine genauere Untersuchung der Pseudogenregionen von FANCD2 ermöglichte dabei die gezielte Mutationsanalyse des Gens. Insgesamt konnten die Ergebnisse dieser Arbeit dazu beitragen, das Mutationsspektrum in FA zu erweitern und durch die Identifizierung und Charakterisierung einzelner Patienten neue Einblicke in verschiedene Komponenten des FA/BRCA-Signalweges zu erhalten. Es zeigte sich, dass neue DNA-Sequenzierungsstrategien in der FA-Diagnostik eingesetzt werden können, um eine effiziente Mutationsanalyse zu gewährleisten und klassische Methoden in Teilbereichen zu ersetzen. / Fanconi anemia (FA) is, with the exception of mutations in FANCR/RAD51, an autosomal recessive or X-linked inherited disease that is characterized by a remarkable clinical and genetic heterogeneity. In addition to progressive bone marrow failure, typical features include a multitude of developmental malformations, such as radial ray anomalies, growth retardation or cutaneous pigment displacement. Additionally, FA patients have a higher risk for developing acute myelogenous leukemia or solid tumors early in life. To date, pathogenic mutations have been identified in 21 FA genes (FANCA, -B, -C, - D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U or -V) whose protein products are responsible for maintaining genomic integrity and constitute components of the FA/BRCA DNA repair pathway. Typical methods for FA mutation analysis comprise Sanger sequencing as well as MLPA and immunoblot analyses. As no definite genotype-phenotype correlation exists, pathogenic mutation detection in rare subgroups is often quite time-consuming and cost-intensive. Within the last few years, distinct strategies for both enrichment and sequencing of a subset of genes, whole exomes or even the whole genome have been developed that facilitate a cost-effective and time-saving mutation analysis. In the present work different target-enrichment strategies followed by high-throughput sequencing were tested for their applicability in molecular genetic diagnostics of FA in order to complement or even replace classic strategies for mutation analysis. The first part of this work addressed the establishment of an FA-specific gene panel for genotyping FA patients. After optimizing this method by means of FA patients with known mutations, this proved to be an efficient approach for detecting pathogenic mutations in FA patients of unknown complementation groups. Due to FA gene panel analysis, 37 of 47 unclassified FA patients were assigned to a complementation group based on the identification of their causative mutations. In another approach, a commercial enrichment panel was tested for its application in FA diagnostics. Again, most pathogenic mutations of five classified and 13 unclassified FA patients were detected, enabling a molecular diagnosis for nine previously unclassified FA patients. Moreover, six selected patients were studied by exome analysis in addition to panel enrichment. This allowed for mutations in known FA complementation groups to be confirmed or newly identified. Additionally, potentially pathogenic variants in DNA-repair genes outside the FA/BRCA pathway were verified in two patients with an unconfirmed suspected diagnosis of FA. One previously undescribed homozygous nonsense mutation in the BER glycosylase NTHL1 was detected in several members of one family with various tumors. For this gene, only two distinct pathogenic mutations were previously described to cause a novel cancer syndrome. In another patient, compound heterozygous mutations in RPA1 were detected, a gene for which no disease pattern is yet known. By means of the three different enrichment strategies a total of 47 of 60 unclassified FA patients were definitely assigned to 13 diverse complementation groups. In this context, a broad spectrum of previously undescribed mutations was identified. The majority of all verified mutations were splice mutations that were examined for an effect on the canonical splicing pattern in order to verify a pathogenic effect. Additionally, this work also included the characterization of individual FA patients and complementation groups, respectively. These include the rare subgroups FA-T and FA-Q, for each of which one new patient was identified. Functional characterization of the third ever described FA-Q patient allowed new insights into the interplay of DNA interstrand-crosslink and nucleotide excision repair and broadened the spectrum of phenotypic variability of FA by the subjective and cellular UV sensitivity of this patient. Furthermore, the mutation spectrum in both FA-I and FA-D2 was expanded. Here, a closer investigation of the pseudogene regions of FANCD2 facilitated a precise mutation screening of the gene. Overall, the results of this work broadened the mutation spectrum of FA and allowed new insights into diverse components of the FA/BRCA pathway by identifying and characterizing individual patients. It became apparent that novel strategies for DNA sequencing can be applied in FA diagnostics to ensure an efficient mutation analysis, as well as to replace some parts of classical approaches.
10

FAAP100, der FA/BRCA-Signalweg für genomische Stabilität und das DNA-Reparatur-Netzwerk / FAAP100, the FA/BRCA pathway for genomic stability and the DNA repair network

Kühl, Julia January 2022 (has links) (PDF)
Die Fanconi-Anämie (FA) ist eine seltene, heterogene Erbkrankheit. Sie weist ein sehr variables klinisches Erscheinungsbild auf, das sich aus angeborenen Fehlbildungen, hämatologischen Funktionsstörungen, einem erhöhten Risiko für Tumorentwicklung und endokrinen Pathologien zusammensetzt. Die Erkrankung zählt zu den genomischen Instabilitätssyndromen, welche durch eine fehlerhafte DNA-Schadensreparatur gekennzeichnet sind. Bei der FA zeigt sich dies vor allem in einer charakteristischen Hypersensitivität gegenüber DNA-quervernetzenden Substanzen (z. B. Mitomycin C, Cisplatin). Der zelluläre FA-Phänotyp zeichnet sich durch eine erhöhte Chromosomenbrüchigkeit und einen Zellzyklusarrest in der G2-Phase aus. Diese Charakteristika sind bereits spontan vorhanden und werden durch Induktion mit DNA-quervernetzenden Substanzen verstärkt. Der Gendefekt ist dabei in einem der 22 bekannten FA-Gene (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U, -V, -W) oder in noch unbekannten FA-Genen zu finden. Die FA-Gendefekte werden mit Ausnahme von FANCR (dominant-negative de novo Mutationen) und FANCB (X-chromosomal) autosomal rezessiv vererbt. Die FA-Genprodukte bilden zusammen mit weiteren Proteinen den FA/BRCA-Signalweg. Das Schlüsselereignis dieses Signalwegs stellt die Monoubiquitinierung von FANCD2 und FANCI (ID2-Komplex) dar. Ausgehend davon lässt sich zwischen upstream- und downstream-gelegenen FA-Proteinen unterscheiden. Letztere sind direkt an der DNA-Schadensreparatur beteiligt. Zu den upstream-gelegenen Proteinen zählt der FA-Kernkomplex, der sich aus bekannten FA-Proteinen und aus FA-assoziierten-Proteinen (FAAPs) zusammensetzt und für die Monoubiquitinierung des ID2-Komplexes verantwortlich ist. Für FAAPs wurden bisher keine pathogenen humanen Mutationen beschrieben. Zu diesen Proteinen gehört auch FAAP100, das mit FANCB und FANCL innerhalb des FA-Kernkomplexes den Subkomplex LBP100 bildet. Durch die vorliegende Arbeit wurde eine nähere Charakterisierung dieses Proteins erreicht. In einer Amnion-Zelllinie konnte eine homozygote Missense-Mutation identifiziert werden. Der Fetus zeigte einen typischen FA-Phänotyp und auch seine Zellen wiesen charakteristische FA-Merkmale auf. Der zelluläre Phänotyp ließ sich durch FAAP100WT komplementieren, sodass die Pathogenität der Mutation bewiesen war. Unterstützend dazu wurden mithilfe des CRISPR/Cas9-Systems weitere FAAP100-defiziente Zelllinien generiert. Diese zeigten ebenfalls einen typischen FA-Phänotyp, welcher sich durch FAAP100WT komplementieren ließ. Die in vitro-Modelle dienten als Grundlage dafür, die Funktion des FA-Kernkomplexes im Allgemeinen und die des Subkomplexes LBP100 im Besonderen besser zu verstehen. Dabei kann nur durch intaktes FAAP100 das LBP100-Modul gebildet und dieses an die DNA-Schadensstelle transportiert werden. Dort leistet FAAP100 einen essentiellen Beitrag für den FANCD2-Monoubiquitinierungsprozess und somit für die Aktivierung der FA-abhängigen DNA-Schadensreparatur. Um die Funktion von FAAP100 auch in vivo zu untersuchen, wurde ein Faap100-/--Mausmodell generiert, das einen mit anderen FA-Mausmodellen vergleichbaren, relativ schweren FA-Phänotyp aufwies. Aufgrund der Ergebnisse lässt sich FAAP100 als neues FA-Gen klassifizieren. Zudem wurde die Rolle des Subkomplexes LBP100 innerhalb des FA-Kernkomplexes weiter aufgeklärt. Beides trägt zu einem besseren Verständnis des FA/BRCA-Signalweges bei. Ein weiterer Teil der vorliegenden Arbeit beschäftigt sich mit der Charakterisierung von FAAP100138, einer bisher nicht validierten Isoform von FAAP100. Durch dieses Protein konnte der zelluläre FA-Phänotyp von FAAP100-defizienten Zelllinien nicht komplementiert werden, jedoch wurden Hinweise auf einen dominant-negativen Effekt von FAAP100138 auf den FA/BRCA-Signalweg gefunden. Dies könnte zu der Erklärung beitragen, warum und wie der Signalweg, beispielsweise in bestimmtem Gewebearten, herunterreguliert wird. Zudem wäre eine Verwendung in der Krebstherapie denkbar. / Fanconi Anemia (FA) is a rare heterogeneous hereditary disease. It shows a highly variable clinical presentation including congenital malformations, bone marrow failure and increased risk for cancer and endocrine pathologies. The disease is classified as one of the genomic instability disorders that are characterized by failure of DNA damage repair processes. FA shows a typical hypersensitivity toward DNA crosslinking agents (e.g. Mitomycin C, cisplatin). There is an increased rate of chromosomal breakage and cell cycle arrest in the G2 phase. These characteristics are present spontaneously and after incubation with DNA crosslinking agents. The genetic defect can be found in one of the 22 reported FA genes (FANCA, -B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, -Q, -R, -S, -T, -U, -V, -W) or yet unknown FA genes. FA gene defects are inherited in an autosomal recessive way with the exceptions of FANCR (dominant negative de novo mutations) and FANCB (X-linked). Together with other proteins, the FA gene products establish the FA/BRCA pathway. The key event of this pathway is the monoubiquitination of FANCD2 and FANCI (ID2 complex). From this point it is possible to differentiate between upstream and downstream FA proteins. The latter are directly involved in FA-dependent DNA repair processes. The upstream positioned FA proteins form the FA core complex that includes FA and FA-associated proteins (FAAPs). The FA core complex is responsible for the monoubiquitination of FANCD2 and FANCI. To date no pathogenic human mutations of the FAAPs have been described. Among these proteins is FAAP100 which together with FANCB and FANCL forms the subcomplex LBP100 within the FA core complex. In the present thesis a closer characterization of this protein has been achieved. In an amniotic cell line a homozygous missense mutation could be identified. The affected fetus displayed a typical FA phenotype and the cells also showed characteristics of FA. The cellular phenotype was complemented by FAAP100WT, thus proving the pathogenicity of the mutation. Supporting this result, additional FAAP100-deficient cell lines have been generated using the CRISPR/Cas9 system. These also exhibited a typical FA cellular phenotype which could be complemented by FAAP100WT. In vitro models served as a basis for better understanding the function of the FA core complex in general and of the LBP100 subcomplex in particular. Only in the presence of an intact FAAP100 the LBP100 module can be formed and transported to sites of DNA interstrand crosslinks. There, FAAP100 significantly contributes to the FANCD2 monoubiquitination process and thus to the activation of FA-dependent DNA damage repair. In order to also examine the function of FAAP100 in vivo, an Faap100-/- mouse model has been generated which shows a relatively severe FA phenotype comparable to other FA mouse models. Because of these results FAAP100 can be categorized as a new FA gene. Moreover, the role of the LBP100 subcomplex within the FA core complex was further elucidated and a better understanding of the FA/BRCA pathway was achieved. Another part of this thesis deals with the characterization of FAAP100138, a hitherto not validated isoform of FAAP100. The cellular FA phenotype of FAAP100-deficient cell lines could not be complemented by this isoform. However, there are clues pointing to a dominant negative effect of FAAP100138 on the FA/BRCA pathway. This finding could serve as a potential explanation of how and why the FA signaling pathway is downregulated in certain tissues. A therapeutic application for cancer of FAAP100138 appears possible.

Page generated in 0.1071 seconds