Spelling suggestions: "subject:"faraday effect"" "subject:"faradays effect""
41 |
Studium fyzikálních vlastostí magnetických oxidů spektroskopickými metodami / Studium fyzikálních vlastostí magnetických oxidů spektroskopickými metodamiZahradník, Martin January 2014 (has links)
Two groups of magnetic oxides were investigated in this thesis. Thin films of La2/3Sr1/3MnO3 (LSMO) deposited by pulsed laser deposition (PLD) on SrTiO3 (STO) substrates were characterized by polar and longitudinal magneto-optical (MO) Kerr spectroscopy. Experimental results were compared to theoretical calculations based on the transfer matrix formalism. A very good agreement between experimental and theoretical data revealed high magnetic ordering down to 5 nm of film thickness as well as a mechanism of suppression of double exchange interaction near the LSMO/STO interface. Magnetically doped Ce1-xCoxO2-δ films deposited by PLD on MgO (x = 0.05 and 0.10) and oxidized Si (x = 0.20) substrates were studied by combination of spectroscopic ellipsometry and MO Faraday and Kerr spectroscopy. Both diagonal and off-diagonal permittivity tensor components were obtained and verified by theoretical calculations confronted with experimental data. Diagonal spectra revealed two optical transitions from oxygen to cerium states. Off-diagonal spectra revealed two paramagnetic transitions involving cobalt ions. An essential influence of cobalt doping on the resulting ferromagnetic properties of CeO2 was observed.
|
42 |
Synthetic Ferrimagnets and Magneto-Plasmonic Structures for Ultrafast Magnetization SwitchingBradlee K Beauchamp (9026657) 25 June 2020 (has links)
<div>The response time of magnetization switching in current spintronic devices is limited to nanosecond timescales due to the precessional motion of the magnetization during reversal. To overcome this limit two routes of investigation leading to novel recording and logic devices are considered in this thesis: 1) Magnetic tunnel junction structures where the recording and reference layers are replaced by synthetic ferrimagnets and switching is induced by spin transfer torque and 2) Hybrid magneto-photonic devices where switching is induced by plasmon-enhanced all-optical switching. To circumvent limitations of the materials and magnetic properties of CoFeB, the most utilized alloy in spintronics, hcp-CoCrPt, a material that exhibits superior perpendicular anisotropy and thermal stability, is chosen as the ferromagnetic electrode in this work. Whereas actual devices based on the two schemes aforementioned are still in the process of being fabricated, through collaborative work with our international collaborators, this thesis describes fundamental magnetic and structural characterization needed for the realization of said ultrafast switching devices. The magnetic switching behavior of CoCrPt-Ru-CoCrPt synthetic ferrimagnets with perpendicular magnetic anisotropy have been studied in the temperature range from 2K to 300K. It was found that two sets of magnetic transitions occur in the CoCrPt-Ru-CoCrPt ferrimagnet systems studied. The first set exhibits three magnetization states in the 50K – 370K range, whereas the second involves only two states in the 2K and 50K range. The magnetic hysteresis curves of the synthetic ferrimagnet are assessed using an energy diagram technique which accurately describes the competition between interlayer exchange coupling energy, Zeeman energy, and anisotropy energy in the system. This energy diagram analysis is then used to predict the changes in the magnetic hysteresis curves of the synthetic ferrimagnet from 200K to 370K. This represents the potential operation temperature extrema that a synthetic ferrimagnet could be expected to operate at, were it to be utilized as a free layer in a memory or sensor spintronic device in the device configuration described in this dissertation.</div><div>Circularly polarized fs laser pulses generate large opto-magnetic fields in magnetic materials, through the inverse Faraday effect. These fields are attributed to be largely responsible for achieving ultrafast all-optical magnetization switching (AOS). All experimental demonstrations of AOS thus far have been realized on thin films over micron-sized irradiated regions. To achieve magnetization switching speeds in the ps and potentially fs time regimes, this work proposes the use of surface plasmon resonances at the interface of hybrid magneto-photonic heterostructures. In addition to the ability of plasmon resonances to confine light in the nm scale, the resonant excitation can largely enhance induced opto-magnetic fields in perpendicular magnetic anisotropy materials. This requires strong spin-photon coupling between the plasmonic and the magnetic materials, which thus requires the minimization of seed layers used for growth of the magnetic layer. This work reports on the development of ultrathin (1 nm thick) interlayers to control the growth orientation of hcp-Co alloys grown on the refractory plasmonic material, TiN, to align the magnetic axis out-of-plane. CoCrPtTa seed layers down to 1 nm were developed to seed the growth of CoCrPt, and the dependence of the quality of the CoCrPt is investigated as Ta composition is varied in the seed layer. Whereas bismuth iron garnet (BIG) meets the magneto-optical requirements for a hybrid magneto-photonic material, its magnetic and structural properties are highly sensitive to the Bi:Fe ratio and must be grown epitaxially on single crystalline substrates. Therefore, in this work we have investigated alternative materials that offer superior magnetic properties and are amenable to growth on inexpensive substrates. Opto-magnetic field enhancements up to 2.6x in Co-ferrite magneto-photonic heterostructures have been obtained via finite element analysis modelling. Alternative materials for plasmon-enhanced all-optical switching such as Co/Pd multilayers have also been investigated. Successful growth of Co/Pd multilayers on TiN using ultrathin Ti interlayers has been achieved. </div><div><br></div>
|
43 |
Etude de la réalisation d'un isolateur optique intégré sur verre / Study of the realization of a glass-integrated optical isolatorGarayt, Jean-Philippe 31 October 2017 (has links)
L’essor des télécommunications par fibre optique nécessite l’insertion en sortie des lasers d’un isolateur optique intégré protégeant celui-ci des réflexions qui le déstabilisent. Ce composant existe à l’heure actuelle sous forme massive, mais son intégration sur la même plaquette que le laser pose problème du fait de la difficulté à intégrer les bons matériaux magnétooptiques sur les substrats usuels de l’optique guidée. Dans cette perspective, l’intégration de nanoparticules magnétiques dans un sol-gel déposé sur les guides optiques est une voie prometteuse, développée par le laboratoire Hubert Curien. Cette thèse a eu pour but d’étudier de manière plus systématique le composant non-réciproque qui entre dans la fabrication des isolateurs à conversion de mode, à savoir le rotateur non-réciproque. Deux études poussées, l’une théorique, l’autre expérimentale, recoupées entre elles par des modèles numériques, ont été mises en oeuvre au cours des années de cette thèse. L’étude théorique a permis de tenir compte tous les paramètres ayant une influence sur l’état de polarisation de la lumière dans un guide magnétooptique, y compris les dichroïsmes souvent négligés. L’étude pratique, à partir d’échantillons sur verre réalisés en collaboration avec l’IMEP-LAHC et le laboratoire PHENIX, a abouti à une caractérisation quasi complète des effets magnétooptiques — longitudinaux et transverses — dans les guides et de l’influence des paramètres de fabrication sur ceux-ci. Au final, ces résultats nous ont donné une compréhension plus complète du fonctionnement des guides magnétooptiques, et nous ont permis de prédire les paramètres optimaux qu’il faudra mettre afin de fabriquer, dans un futur proche, l’isolateur complet sur une seule plaque de verre / The development of optical-fiber telecommunications requires the insertion of optical isolator between lasers and fibers, in order to protect them against perturbating reflexions. This component is currently inserted in a bulk form, but the goal is to integrate it on the same wafer than the laser; nevertheless, this is problematic due to the difficulty to integrate good magnetooptical materials on usual substrates as glass or silicon. One of the promising way to achieve this, developped by the Laboratoire Hubert Curien, is the embedding of magnetic nanoparticles into a sol-gel matrix deposited above the optical guides. This thesis aimed at studying more deeply the main non-reciprocal component of integrated mode conversion optical isolators: the non-reciprocal rotator. A theorical and a practical study have both been performed, with numerical simulations to confront them. The theorical study aimed at describing the evolution of propagation in magnetooptical waveguides with respect to all effects, even absorption and dichroïsm. Then a practical study was performed on glass samples engineered in collaboration with IMEP-LAHC and the PHENIX laboratory, and lead to a full measurement of longitudinal and transverse magnetooptical effects, and their evolution related to the fabrication parameters of the samples. Finally, these results gave us a comprehensive view of how magnetooptical waveguides behave, and we were able to predict the good parameters to choose in order to construct, in a close future, a glass-integrated optical isolator
|
44 |
A polarization sensitive interferometer for Faraday rotation detectionLaForge, Joshua Michael 23 July 2007 (has links)
Time-resolved Faraday rotation (TRFR) is a pulsed laser pump/probe optical measurement used to characterize electron spin dynamics in semiconductor materials. A Mach-Zehnder type interferometer with orthogonally polarized arms is presented as a device for TRFR measurement that is superior to optical bridge detection, the traditional measuring technique, since Faraday rotation can be passively optically amplified via interference. Operation of the interferometer is analyzed under ideal conditions. Corrections to the ideal case stemming from imperfectly aligned optics, finite polarization extinction ratios, and an imperfect recombination optic are analyzed using a matrix transformation approach. The design of the interferometer is presented and chronicled. A description of the single-beam active control system utilized to stabilize the interferometer by continuous corrections to the optical path length of one arm with a piezoelectric actuator is given. Optical amplification by increasing the power in either arm of the interferometer is demonstrated and TRFR measurements taken with the interferometer at ambient temperatures are compared with measurements taken with the optical bridge. We find the interferometer to offer a detection limit on the order of 50 mrad at room temperature, which is five times more sensitive than the optical bridge. Isolation and stabilization of the interferometer were also successful in reducing signal noise to a level comparable with the optical bridge. Our results demonstrate that the interferometer is a better detection device for Faraday rotation under ambient conditions. In the immediate future, improvements to the control system should be made and experiments should be performed with high-quality samples at cryogenic temperatures to confirm that the interferometer performs as favorably under those conditions.
|
45 |
Experiments on the 852 nm D2 Line of 133Cs with a Diode Laser System and their use in Measurement of the Permanent Electric Dipole Moment of the ElectronRavi, Harish January 2016 (has links) (PDF)
We give a brief introduction to atomic physics and the motivation behind our experiments in the first chapter. The electron’s electric dipole moment is an interesting quantity which is yet to be measured. In the 3rd Chapter, we use the technique of chopped non-linear magneto-optic rotation (NMOR) in a room temperature Cs vapor cell to measure the permanent electric dipole moment (EDM) in the atom. The cell has paraffin coating on the walls to increase the relaxation time. The signature of the EDM is a shift in the Larmor precession frequency correlated with the application of an E field. We analyze errors in the technique, and show that the main source of systematic error is the appearance of a longitudinal magnetic field when an electric field is applied. This error can be eliminated by doing measurements on the two ground hyperfine levels. Using an E field of 2.6 kV/cm, we place an upper limit on the electron EDM of 2.9 × 10−22 e-cm with 95% confidence. This limit can be increased by 7 orders-of-magnitude—and brought below the current best experimental value. We give future directions for how this may be achieved. In chapter 4, we examine the Hanle effect for linear and circularly polarized light for different ground states and we find opposite behavior in the transmission signal. In one case, it shifts from enhanced transmission to enhanced absorption and vice-versa in the other case. In Chapter 5, we study the transmission spectrum at different temperatures and device a way to find the number density. We then verify the Clausius-Clapeyron equation and also find the latent heat of vaporization of Cs. Finally, we wrap up with conclusions and future directions.
|
46 |
Relativistic theory of laser-induced magnetization dynamicsMondal, Ritwik January 2017 (has links)
Ultrafast dynamical processes in magnetic systems have become the subject of intense research during the last two decades, initiated by the pioneering discovery of femtosecond laser-induced demagnetization in nickel. In this thesis, we develop theory for fast and ultrafast magnetization dynamics. In particular, we build relativistic theory to explain the magnetization dynamics observed at short timescales in pump-probe magneto-optical experiments and compute from first-principles the coherent laser-induced magnetization. In the developed relativistic theory, we start from the fundamental Dirac-Kohn-Sham equation that includes all relativistic effects related to spin and orbital magnetism as well as the magnetic exchange interaction and any external electromagnetic field. As it describes both particle and antiparticle, a separation between them is sought because we focus on low-energy excitations within the particle system. Doing so, we derive the extended Pauli Hamiltonian that captures all relativistic contributions in first order; the most significant one is the full spin-orbit interaction (gauge invariant and Hermitian). Noteworthy, we find that this relativistic framework explains a wide range of dynamical magnetic phenomena. To mention, (i) we show that the phenomenological Landau-Lifshitz-Gilbert equation of spin dynamics can be rigorously obtained from the Dirac-Kohn-Sham equation and we derive an exact expression for the tensorial Gilbert damping. (ii) We derive, from the gauge-invariant part of the spin-orbit interaction, the existence of a relativistic interaction that linearly couples the angular momentum of the electromagnetic field and the electron spin. We show this spin-photon interaction to provide the previously unknown origin of the angular magneto-electric coupling, to explain coherent ultrafast magnetism, and to lead to a new torque, the optical spin-orbit torque. (iii) We derive a definite description of magnetic inertia (spin nutation) in ultrafast magnetization dynamics and show that it is a higher-order spin-orbit effect. (iv) We develop a unified theory of magnetization dynamics that includes spin currents and show that the nonrelativistic spin currents naturally lead to the current-induced spin-transfer torques, whereas the relativistic spin currents lead to spin-orbit torques. (v) Using the relativistic framework together with ab initio magneto-optical calculations we show that relativistic laser-induced spin-flip transitions do not explain the measured large laser-induced demagnetization. Employing the ab initio relativistic framework, we calculate the amount of magnetization that can be imparted in a material by means of circularly polarized light – the so-called inverse Faraday effect. We show the existence of both spin and orbital induced magnetizations, which surprisingly reveal a different behavior. We establish that the laser-induced magnetization is antisymmetric in the light’s helicity for nonmagnets, antiferromagnets and paramagnets; however, it is only asymmetric for ferromagnets.
|
47 |
A polarization sensitive interferometer for Faraday rotation detectionLaForge, Joshua Michael 23 July 2007 (has links)
Time-resolved Faraday rotation (TRFR) is a pulsed laser pump/probe optical measurement used to characterize electron spin dynamics in semiconductor materials. A Mach-Zehnder type interferometer with orthogonally polarized arms is presented as a device for TRFR measurement that is superior to optical bridge detection, the traditional measuring technique, since Faraday rotation can be passively optically amplified via interference. Operation of the interferometer is analyzed under ideal conditions. Corrections to the ideal case stemming from imperfectly aligned optics, finite polarization extinction ratios, and an imperfect recombination optic are analyzed using a matrix transformation approach. The design of the interferometer is presented and chronicled. A description of the single-beam active control system utilized to stabilize the interferometer by continuous corrections to the optical path length of one arm with a piezoelectric actuator is given. Optical amplification by increasing the power in either arm of the interferometer is demonstrated and TRFR measurements taken with the interferometer at ambient temperatures are compared with measurements taken with the optical bridge. We find the interferometer to offer a detection limit on the order of 50 mrad at room temperature, which is five times more sensitive than the optical bridge. Isolation and stabilization of the interferometer were also successful in reducing signal noise to a level comparable with the optical bridge. Our results demonstrate that the interferometer is a better detection device for Faraday rotation under ambient conditions. In the immediate future, improvements to the control system should be made and experiments should be performed with high-quality samples at cryogenic temperatures to confirm that the interferometer performs as favorably under those conditions.
|
48 |
Employment of dual frequency excitation method to improve the accuracy of an optical current sensor, by measuring both current and temperature.Karri, Avinash 12 1900 (has links)
Optical current sensors (OCSs) are initially developed to measure relatively large current over a wide range of frequency band. They are also used as protective devices in the event a fault occurs due to a short circuit, in the power generation and distribution industries. The basic principal used in OCS is the Faraday effect. When a light guiding faraday medium is placed in a magnetic field which is produced by the current flowing in the conductor around the magnetic core, the plane of polarization of the linearly polarized light is rotated. The angle of rotation is proportional to the magnetic field strength, proportionality constant and the interaction length. The proportionality constant is the Verdet constant V (λ, T), which is dependent on both temperature and wavelength of the light. Opto electrical methods are used to measure the angle of rotation of the polarization plane. By measuring the angle the current flowing in the current carrying conductor can be calculated. But the accuracy of the OCS is lost of the angle of rotation of the polarization plane is dependent on the Verdet constant, apart from the magnetic field strength. As temperature increases the Verdet constant decreases, so the angle of rotation decreases. To compensate the effect of temperature on the OCS, a new method has been proposed. The current and temperature are measured with the help of a duel frequency method. To detect the line current in the conductor or coil, a small signal from the line current is fed to the reference of the lock in. To detect the temperature, the coil is excited with an electrical signal of a frequency different from the line frequency, and a small sample of this frequency signal is applied to the reference of the lock in. The temperature and current readings obtained are look up at the database value to give the actual output. Controlled environment is maintained to record the values in the database that maps the current and temperature magnitude values at the DSP lock in amplifier, to the actual temperature and current. By this method we can achieve better compensation to the temperature changes, with a large dynamic range and better sensitivity and accuracy.
|
Page generated in 0.063 seconds