• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • Tagged with
  • 14
  • 14
  • 14
  • 14
  • 9
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Post-Transcriptional Regulation of the Murine Inducible Nitric Oxide Synthase Gene

Söderberg, Malin January 2005 (has links)
Large amounts of nitric oxide (NO) are produced by the inducible nitric oxide synthase (iNOS) upon inflammatory stimuli. NO is a multifaceted molecule, which may have beneficial effects as an antimicrobial agent in the immune defense, or cytotoxic effects in chronic inflammations, manifested as e.g. arthritis and asthma. Understanding the mode of regulation of the iNOS gene is a prerequisite for developing intervention strategies in various pathological conditions where detrimental effects of NO need to be prevented. Transcriptional processes of the iNOS gene regulation are well described, while post-transcriptional events have not been studied in detail. The aim of the present thesis was to investigate post-transcriptional regulatory mechanisms involving the 3’untranslated region (UTR) of the murine iNOS mRNA. Inflammation-dependent RNA-protein interactions with the iNOS mRNA 3’UTR were characterized by RNA gel shift analysis and UV cross-linking. Trans-acting factors interacting with the 3’UTR were detected in mouse liver and macrophages and identified as heterogeneous nuclear ribonucleoproteins (hnRNP) I and L. Western blot revealed that reduced hnRNPI levels are responsible for the decreased interaction of hnRNPI with iNOS 3’UTR upon induction in inflammatory conditions. This decrease was reversed by the glucocorticoid dexamethasone, concomitant with decreased iNOS mRNA levels and stability. Introduction of the iNOS 3’UTR into a luciferase reporter gene reduced its expression in macrophages. Upon deletions of the binding sites for hnRNPI and hnRNPL, the luciferase expression was recovered. In addition, inflammatory stimuli increased the luciferase activity of the construct with the full-length 3’UTR, while only weak effects of the stimuli were seen on the deletion constructs. In conclusion, the results suggest that binding of hnRNPI and hnRNPL to the iNOS mRNA 3’UTR promotes degradation of the transcript. Induction of iNOS by inflammatory stimuli dissociates the RNA-protein complex, yielding a more stable mRNA. In addition, post-transcriptional down-regulation of the iNOS gene by the anti-inflammatory glucocorticoid dexamethasone, seems to involve hnRNPI.
12

Regulation of Vitamin D 25-hydroxylases : Effects of Vitamin D Metabolites and Pharmaceutical Compounds on the Bioactivation of Vitamin D

Ellfolk, Maria January 2008 (has links)
A 700bp portion of the promoter of CYP2D25, the porcine microsomal vitamin D 25-hydroxylase was isolated and sequenced. The computer analysis of the sequence revealed the existence of a putative VDRE at 220 bp upstream of the transcription start site. A CYP2D25 promoter-luciferase reporter plasmid was constructed in order to study the transcriptional regulation of the gene. Treatment with the vitamin D metabolites calcidiol and calcitriol suppressed the promoter, provided that the nuclear receptors VDR and RXR were overexpressed. Phenobarbital was also capable of suppressing the promoter if the nuclear receptors PXR or CAR were overexpressed. The 25-hydroxylases are not expressed solely in liver but in a wide array of other organs as well. It is therefore possible at least in theory to study the vitamin D 25-hydroxylation in human subjects using cells from extrahepatic organs, from which biopsy retrieval is easier than from the liver. Dermal fibroblasts are frequently used to study different pathological conditions in human subjects and they are easy to come by. Dermal fibroblasts were shown to express two vitamin D 25-hydroxylases: CYP27A1 and CYP2R1. The expression pattern of CYP2R1 displayed considerable interindividual variation. The fibroblasts were also capable of measurable vitamin D 25-hydroxylation, which makes dermal fibroblasts a possible tool in studying vitamin D 25-hydroxylation in human subjects. Little is known about the regulation of expression and activity of the human vitamin D 25-hydroxylases. Therefore dermal fibroblasts – expressing CYP2R1 and CYP27A1 – and human prostate cancer LNCaP cells, that express CYP2R1 and CYP2J2, were treated with calcitriol and phenobarbital and efavirenz, two drugs that give rise to vitamin D deficiency. Treatment decreased the mRNA levels of CYP2R1 and CYP2J2 provided that the treated cells also expressed the necessary nuclear receptors. CYP27A1 did not respond to any of the treatments. The treatments also managed to decrease the 25-hydroxylating activity of the cells. The results show that vitamin D 25-hydroxylases can be regulated by both endogenous and xenobiotic compounds.
13

Steroid-Metabolizing Cytochrome P450 (CYP) Enzymes in the Maintenance of Cholesterol and Sex Hormone Levels

Pettersson, Hanna January 2009 (has links)
The enzymes CYP27A1 and CYP7B1 are widely expressed in various human tissues and perform catalytic reactions in cholesterol homeostasis and endocrine signaling. We have investigated the metabolism of a synthetic oxysterol. In this study, we show that CYP27A1 is the enzyme responsible for a 28-hydroxylation of this oxysterol and that the rate of CYP27A1-mediated metabolism is relatively slow. This may give an explanation for the prolonged inhibitory effects on cholesterol biosynthesis that have been shown for this oxysterol. The current study contributes to the knowledge of synthetically produced oxysterols and their potential use as cholesterol lowering drugs. In two studies we investigated CYP7B1-mediated metabolism of different sex hormones. Our data indicate that CYP7B1 may carry out a previously unknown catalytic reaction involving an androgen. Taken together the data suggest that varying steroid concentrations in cells and tissues may be important for CYP7B1-dependent metabolism of sex hormones and sex hormone precursors. CYP7B1-mediated hydroxylation of sex hormones may influence the cellular levels of these steroids and may be a potential pathway for elimination of the steroids from the cell. Some known CYP7B1 substrates are agonists for ERα and ERβ but the reported role(s) of CYP7B1 for ER action are not fully understood. In the last study we investigated the role(s) of CYP7B1-mediated metabolism for ER-mediated action. Our data indicate that CYP7B1-mediated conversion of steroids that affect ER-mediated response into their 7α-hydroxymetabolites will result in loss of action. This indicates that CYP7B1 may have an important role for regulation of ER-mediated processes in the body. In summary, results from this thesis contribute to the knowledge on the metabolism of synthetic oxysterols of potential use as cholesterol lowering drugs and the role(s) of CYP7B1-mediated metabolism for processes related to the functions of sex hormones. / Disputationsordförande;Professor Eva Brittebo, Inst. för Biovetenskap, Avd. för Toxikologi, Uppsala Universitet, UppsalaBetygsnämndens ledamöten; Docent Lena Ekström, Inst. för Laboratoriemedicin, Avd. för Klinisk Kemi, Karolinska Universitetssjukhuset, HuddingeDocent Ulf Diczfaluzy, Inst. för Laboratoriemedicin, Avd. för Klinisk Kemi, Karolinska Universitetssjukhuset, HuddingeProfessor Agneta Oskarsson, Inst. BVF, Avd. för farmakologi och toxikologi, SLU, Uppsala
14

Enzymatic Regulation of Steroidogenesis and Nuclear Receptor Activation : Special Focus on Vitamin D and Sex Hormones

Lundqvist, Johan January 2011 (has links)
Enzyme-catalyzed reactions are important to regulate steroidogenesis and nuclear receptor activation. The present investigation examines the role of steroid metabolism catalyzed by CYP7B1 for regulation of hormone receptor activation and the effects of vitamin D on enzymatic regulation of steroidogenesis. The study reports data indicating that CYP7B1 can regulate estrogenic signaling by converting estrogens into inactive or less active metabolites. Similar results were obtained for CYP7B1-mediated metabolism of some androgen receptor ligands, indicating that CYP7B1 can be involved also in the regulation of androgenic signaling. CYP7B1 substrates and metabolites were found to exert androgenic effects in a cell line-specific manner. Furthermore, cell line differences were observed in the expression pattern for androgen receptor comodulators. This thesis reports that 1α,25-dihydroxyvitamin D3 alters the gene expression and enzyme activity of CYP21A2 and CYP17A1 leading to suppressed production of aldosterone, dehydroepiandrosterone and androstenedione in adrenocortical cells. These are novel findings on vitamin D action. A mechanism is reported for the vitamin D-mediated regulation of the CYP21A2 gene. Data indicate that vitamin D receptor interacting repressor (VDIR) and Williams syndrome transcription factor (WSTF) are key comodulators in this novel vitamin D receptor (VDR)-mediated mechanism. Furthermore, the results indicate that altered expression levels of VDIR and WSTF can shift the suppressing effect of vitamin D to a stimulatory effect. Also, epigenetic components were found to be involved in the effects of vitamin D on CYP21A2 transcriptional rate. In addition, a functional vitamin D response element was identified in the CYP21A2 promoter. This study also reports that 1α,25-dihydroxyvitamin D3 affects sex hormone production in a tissue-specific way. Gene expression and enzyme activity of aromatase were found to be downregulated in cells derived from breast, but not in cells derived from prostate and adrenal cortex. The production of estradiol and dihydrotestosterone was altered in a tissue-selective manner following vitamin D treatment. These findings are of importance for the discussion on vitamin D as a potential anti-breast cancer agent.

Page generated in 0.0634 seconds