• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 2
  • 1
  • Tagged with
  • 23
  • 23
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mitochondrial DNA regulates TNF-alpha mRNA stability

Bond, Stephanie 08 April 2016 (has links)
Sepsis is defined as potentially fatal systemic inflammation, caused by an infection. It is the leading cause of ICU mortality and the 10th leading cause of death in the United States. Several models exist to mimic this disorder, and have demonstrated differential mortality rates between the models as well as the individual animals. Previous studies have shown that elevated levels of plasma mitochondrial DNA (mtDNA) correlated with mortality in septic patients, and cell-free mitochondrial DNA can elicit toll-like receptor mediated immune responses similar to LPS-mediated septicemia. However, the role of mtDNA in the pathophysiology sepsis is still unknown. The focus of this study was to create sepsis in a mouse model using the murine Cecal Ligation and Puncture (CLP) model, and measure plasma mtDNA levels. After CLP was performed on experimental mice, blood plasma was collected 24 hours later. Elevated amounts of circulating mtDNA were detectable in the plasma using real time PCR and cytochrome B2 as a marker of mitochondria. These data were correlated with plasma IL-6 levels, which were used to predict mortality within 5 days of CLP to stratify mice into two populations of those predicted to live or die following the procedure. We also aimed to investigate the effect of mtDNA and mitochondrial debris on naïve mouse macrophages in an in vitro study of the regulation of inflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β). In order to observe the effects of mtDNA on murine macrophages, mitochondria was purified from mouse liver and used to stimulate these cells alongside positive control, LPS. Stimulation with mtDNA and mitochondrial debris resulted in increased levels of TNF-α mRNA in lysed cells as well as their surrounding media as compared to control cells, as well as increased transcript half life as measured over four hours post stimulation with transcription inhibitor actinomycin D. The increases in mRNA half-life elicited by mtDNA were comparable to those observed after LPS addition. Stimulation also caused increased binding of TNF-α mRNA to the RNA binding protein, AUF1, as measured by immunoprecipitation of RNA-protein complexes and assayed for TNF-α binding by PCR. These results demonstrate that mitochondrial damage-associated molecular patterns regulate TNF-α mRNA expression at the post-transcriptional level through AUF1, an mRNA destabilizing factor. This is a novel mechanism that likely contributes to sepsis pathophysiology, and demonstrates the involvement of the mitochondrial fission and fusion balance and its regulation in the sepsis innate immune response.
2

Histone deacetylase inhibitor regulation of gene expression

Hirsch, Calley Lynn 28 June 2007
Histone deacetylase inhibitors (HDIs) are a group of chemo-preventive and chemo-therapeutic agents that have generated significant attention in clinical trials, given their ability to selectively induce cell cycle arrest, differentiation and/or apoptosis of tumor cells. Presently, these agents are proposed to function by altering gene expression levels, primarily by promoting histone hyperacetylation and gene transcription. However, in this thesis, HDIs are reported to control the expression of genes from the c-Src kinase family and p21WAF1 by means other than transcriptional activation. <p>Overexpression and activation of c-Src, a 60kDa non-receptor tyrosine kinase, has been implicated in the development, growth, progression, and metastasis of several human cancers, especially those of the colon. Butyrate and the more specific histone deacetylase inhibitor trichostatin A (TSA) were both found to effectively inhibit the expression of c-Src mRNA and protein in a number of tumor cell lines, including those of the colon, liver and breast. Expression of the SRC oncogene is alternatively regulated by the SRC1A and SRC1 promoters. HDIs were shown to repress c-Src expression by inhibiting transcription of both of these promoters, independent of any new protein synthesis. Furthermore, butyrate and TSA similarly regulated the expression of the c-Src family kinase (SFK) members Yes, Fyn, Lyn and Lck in human colon cancer cell lines. In addition, TATA binding protein (TBP) associated factor 1 (TAF1) was shown to be necessary for basal transcription of the SRC1A, YES and LYN promoters, but was not required for HDI mediated repression. <p>Induction of the potent cyclin dependent kinase inhibitor p21WAF1 has been identified to be a key feature of HDI mediated cell cycle arrest. The level of p21WAF1 expression has been extensively reported to be directly upregulated by HDIs in a p53 independent manner that requires Sp family binding sites in the p21WAF1 proximal promoter to induce transcription. However, HDIs were shown to be capable of inducing p21WAF1 gene expression, dependent on new protein synthesis, by increasing mRNA stability. To date, p21WAF1 mRNA stability has been extensively studied and a number of cis-acting elements in the 3 untranslated region (UTR) of the p21WAF1 mRNA have been implicated in the regulation of mRNA stability, such as AU rich elements (AREs) and a 42 nucleotide HuD/Elav binding element. Similarly, in this work, two novel cis-acting elements were identified in the 3 UTR of p21WAF1 and were shown to facilitate basal and HDI induced post-transcriptional regulation of p21WAF1 mRNA stability in HepG2 cells. Collectively, these studies highlight the intricacy of HDI mediated effects and challenge the preconceptions regarding the molecular mechanism of these anti-tumor agents.
3

Histone deacetylase inhibitor regulation of gene expression

Hirsch, Calley Lynn 28 June 2007 (has links)
Histone deacetylase inhibitors (HDIs) are a group of chemo-preventive and chemo-therapeutic agents that have generated significant attention in clinical trials, given their ability to selectively induce cell cycle arrest, differentiation and/or apoptosis of tumor cells. Presently, these agents are proposed to function by altering gene expression levels, primarily by promoting histone hyperacetylation and gene transcription. However, in this thesis, HDIs are reported to control the expression of genes from the c-Src kinase family and p21WAF1 by means other than transcriptional activation. <p>Overexpression and activation of c-Src, a 60kDa non-receptor tyrosine kinase, has been implicated in the development, growth, progression, and metastasis of several human cancers, especially those of the colon. Butyrate and the more specific histone deacetylase inhibitor trichostatin A (TSA) were both found to effectively inhibit the expression of c-Src mRNA and protein in a number of tumor cell lines, including those of the colon, liver and breast. Expression of the SRC oncogene is alternatively regulated by the SRC1A and SRC1 promoters. HDIs were shown to repress c-Src expression by inhibiting transcription of both of these promoters, independent of any new protein synthesis. Furthermore, butyrate and TSA similarly regulated the expression of the c-Src family kinase (SFK) members Yes, Fyn, Lyn and Lck in human colon cancer cell lines. In addition, TATA binding protein (TBP) associated factor 1 (TAF1) was shown to be necessary for basal transcription of the SRC1A, YES and LYN promoters, but was not required for HDI mediated repression. <p>Induction of the potent cyclin dependent kinase inhibitor p21WAF1 has been identified to be a key feature of HDI mediated cell cycle arrest. The level of p21WAF1 expression has been extensively reported to be directly upregulated by HDIs in a p53 independent manner that requires Sp family binding sites in the p21WAF1 proximal promoter to induce transcription. However, HDIs were shown to be capable of inducing p21WAF1 gene expression, dependent on new protein synthesis, by increasing mRNA stability. To date, p21WAF1 mRNA stability has been extensively studied and a number of cis-acting elements in the 3 untranslated region (UTR) of the p21WAF1 mRNA have been implicated in the regulation of mRNA stability, such as AU rich elements (AREs) and a 42 nucleotide HuD/Elav binding element. Similarly, in this work, two novel cis-acting elements were identified in the 3 UTR of p21WAF1 and were shown to facilitate basal and HDI induced post-transcriptional regulation of p21WAF1 mRNA stability in HepG2 cells. Collectively, these studies highlight the intricacy of HDI mediated effects and challenge the preconceptions regarding the molecular mechanism of these anti-tumor agents.
4

THE ROLE OF KINASE ACTIVITY OF IRAK4 IN TLR/IL-1R-MEDIATED SIGNALING

Kim, Tae Whan January 2009 (has links)
No description available.
5

Cellular Retinoic Acid-Binding Protein 2 Cooperates with HuR to Stabilize RNA and Inhibit Tumor Growth

Vreeland, Amanda C. 13 February 2015 (has links)
No description available.
6

Identification of Factors Involved in the Regulation of the <i>Bacillus subtilis metK</i> Gene

Allen, George M. January 2016 (has links)
No description available.
7

Genetic Deletion of Interleukin-19 Exacerbates Atherogenesis in Double Knockout Mice by Modulation of mRNA Stability Protein HuR

Ray, Mitali January 2018 (has links)
Objective: To test the hypothesis that loss of IL-19 exacerbates atherosclerosis. Approach and Results: Il19-/- mice were crossed into Ldlr-/- mice. Double knockout (dKO) mice had increased plaque burden in aortic arch and root compared to Ldlr-/- controls after 14 weeks of high fat diet (HFD). In a rescue study, dKO mice injected i.p. with 10ng/g/day of IL-19 had significantly less plaque burden compared to saline controls. Quantitative RT-PCR and western blot analysis revealed dKO mice had increased global and intraplaque polarization of T cells and macrophages to pro-inflammatory phenotypes, and also significantly increased TNFa expression in spleen and aortic arch compared to Ldlr-/- controls. Results from bone marrow transplantation experiments suggest immune cells participate in IL-19 mediated atheroprotection. Bone marrow derived macrophages (BMDMs) and vascular smooth muscle cells (VSMCs) isolated from dKO mice had significantly greater expression of TNFa mRNA and protein compared to controls. Importantly from a mechanistic standpoint, spleen and aortic arch from dKO mice had significantly increased expression of the mRNA stability protein Human antigen R (HuR). BMDMs and VSMCs isolated from dKO mice also had greater HuR abundance. HuR stabilizes pro-inflammatory transcripts by binding AU-rich elements (AREs) in the 3’ untranslated region (UTR). Cytokine and HuR mRNA stability were increased in dKO BMDMs and VSMCs compared to controls, which was rescued by addition of IL-19 to these cells. IL-19 induces expression of miR133a, which targets and reduces HuR abundance; miR133a levels were lower in dKO mice compared to controls. Conclusions: These data indicate that IL-19 is an atheroprotective cytokine that decreases abundance of HuR, leading to reduced inflammatory mRNA stability. / Biomedical Sciences
8

Codon bias confers stability to human mRNAs / コドンバイアスがヒトmRNAを安定化する

Hia, Fabian 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第22356号 / 医博第4597号 / 新制||医||1042(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 萩原 正敏, 教授 岩田 想, 教授 齊藤 博英 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
9

Enhancement of Regnase-1 expression with stem loop-targeting antisense oligonucleotides alleviates inflammatory diseases / mRNAステムループ構造標的アンチセンスオリゴ核酸を用いたRegnase-1発現増強による炎症抑制法の開発

Tse, Ka Man Carman 26 September 2022 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第24192号 / 医博第4886号 / 新制||医||1060(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 萩原 正敏, 教授 森信 暁雄, 教授 遊佐 宏介 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
10

NEWLY SYNTHESIZED mRNA ESCAPES TRANSLATIONAL REPRESSION DURING THE ACUTE PHASE OF THE MAMMALIAN UNFOLDED PROTEIN RESPONSE

Alzahrani, Mohammed Rubayyi 27 January 2023 (has links)
No description available.

Page generated in 0.066 seconds