• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of Stress Transfer Behavior in Textile Reinforced Concrete with Application to Reinforcement Overlapping and Development Lengths

Azzam, Aussama, Richter, Mike 01 December 2011 (has links) (PDF)
Die kontinuumsmechanische Untersuchung der Lastübertragungsmechanismen zwischen den Rovings im textilbewehrten Feinbeton trägt wesentlich zum Gesamtverständnis des mechanischen Verhaltens des Verbundmaterials bei. Neben der Erfassung der gegenseitigen Beeinflussung sich kreuzender Rovings erfordert insbesondere die mechanische Modellierung und numerische Simulation von Bewehrungsstößen und Endverankerungen die Kenntnis dieser Übertragungsmechanismen. Die numerischen Simulationen sollen u. a. zeigen, welche Endverankerungslängen und welche Übergreifungslängen an Bewehrungsstößen erforderlich sind und wie die Querbewehrung die Rissbildung beeinflusst. / This paper concerns with the investigation of stress transfer mechanisms between yarns and concrete matrix and their influence on the overall behavior of textile reinforced concrete (TRC). This investigation considers textile reinforcement splices and textile reinforcement development lengths and carried out by means of Finite-Element simulations and fracture mechanic approaches. A first modeling procedure is made towards analyzing and investigating the damage mechanisms in TRC specimen under tension loading which are mainly characterized by matrix cracking and yarn pullout. This modeling approach allows for considering the yarn crack bridging which is a main characteristic behavior of TRC. In the same manner, 3D Finite-Element models are conducted for calculating the required reinforcement development lengths and the reinforcement overlapping lengths. The conducted approach takes into account different damage mechanisms observed in the corresponding experimental investigations which are also used for calibrating the modeling procedures. Moreover, the presented approach covers a wide range of required textile reinforcement overlapping lengths and development lengths and provides the corresponding ultimate loads.
2

Investigation of Stress Transfer Behavior in Textile Reinforced Concrete with Application to Reinforcement Overlapping and Development Lengths

Azzam, Aussama, Richter, Mike January 2011 (has links)
Die kontinuumsmechanische Untersuchung der Lastübertragungsmechanismen zwischen den Rovings im textilbewehrten Feinbeton trägt wesentlich zum Gesamtverständnis des mechanischen Verhaltens des Verbundmaterials bei. Neben der Erfassung der gegenseitigen Beeinflussung sich kreuzender Rovings erfordert insbesondere die mechanische Modellierung und numerische Simulation von Bewehrungsstößen und Endverankerungen die Kenntnis dieser Übertragungsmechanismen. Die numerischen Simulationen sollen u. a. zeigen, welche Endverankerungslängen und welche Übergreifungslängen an Bewehrungsstößen erforderlich sind und wie die Querbewehrung die Rissbildung beeinflusst. / This paper concerns with the investigation of stress transfer mechanisms between yarns and concrete matrix and their influence on the overall behavior of textile reinforced concrete (TRC). This investigation considers textile reinforcement splices and textile reinforcement development lengths and carried out by means of Finite-Element simulations and fracture mechanic approaches. A first modeling procedure is made towards analyzing and investigating the damage mechanisms in TRC specimen under tension loading which are mainly characterized by matrix cracking and yarn pullout. This modeling approach allows for considering the yarn crack bridging which is a main characteristic behavior of TRC. In the same manner, 3D Finite-Element models are conducted for calculating the required reinforcement development lengths and the reinforcement overlapping lengths. The conducted approach takes into account different damage mechanisms observed in the corresponding experimental investigations which are also used for calibrating the modeling procedures. Moreover, the presented approach covers a wide range of required textile reinforcement overlapping lengths and development lengths and provides the corresponding ultimate loads.
3

Zur hierarchischen und simultanen Multi-Skalen-Analyse von Textilbeton / On hierarchical and simultaneous multi-scale-analyses of textile reinforced concrete

Lepenies, Ingolf G. 13 January 2009 (has links) (PDF)
Die Arbeit widmet sich der Simulation und der Prognose des Materialverhaltens des Hochleistungsverbundwerkstoffes Textilbeton unter Zugbeanspruchungen. Basierend auf einer hierarchischen mechanischen Modellbildung (Multi-Skalen-Analyse) werden die Tragmechanismen des Verbundwerkstoffes auf drei Strukturebenen abgebildet. Damit lassen sich die den Verbundwerkstoff charakterisierenden mechanischen Kenngrößen aus experimentell ermittelten Kraft-Verschiebungs-Abhängigkeiten ableiten. Diese Kenngrößen sind mit heutiger Messtechnik nicht direkt experimentell bestimmbar. Es wird ein Mikro-Meso-Makro-Prognosemodell (MMM-Prognosemodell) für Textilbeton entwickelt, das basierend auf der Simulation des Mikrostrukturverhaltens das makroskopische Materialverhalten prognostiziert. Die Grundlage dafür bildet die qualitative und quantitative Bestimmung der Verbundeigenschaften zwischen der Filamentbewehrung und der einbettenden Matrix. Für das Verbundverhalten von Rovings in einer Feinbetonmatrix wird, ausgehend von einer Rovingapproximation mit superelliptischem Querschnitt, die partielle Imprägnierung des Rovings und die daraus resultierende Verbundwirkung identifiziert und simuliert. Auf Grundlage der mikro- und mesomechanischen Modelle sowie der Kalibrierung und Verifizierung des MMM-Prognosemodells durch die Simulation von Filament- und Rovingauszugsversuchen wird das makroskopische Zugverhalten von Textilbeton mit Mehrfachrissbildung prognostiziert. Die numerischen Ergebnisse werden durch die Ergebnisse der experimentellen Dehnkörperversuche validiert. Das MMM-Prognosemodell für Textilbeton wird im Rahmen einer hierarchischen Multi-Skalen-Analyse auf Zugversuche von Textilbetonbauteilen angewendet. Weiterhin wird die Verstärkungswirkung einer Textilbetonschicht an Stahlbetonbauteilen unter Biegebeanspruchung zutreffend simuliert. Es wird das nichtlineare Bauteilverhalten abgebildet, wobei die Bauteildurchbiegung, die effektiven Rovingbeanspruchungen und die Beanspruchungen der Filamente im Roving abgebildet werden. / The present work deals with the simulation and the prediction of the effective material behavior of the high performance composite textile reinforced concrete (TRC) subjected to tension. Based on a hierarchical material model within a multi scale approach the load bearing mechanisms of TRC are modeled on three structural scales. Therewith, the mechanical parameters characterizing the composite material can be deduced indirectly by experimentally determined force displacement relations obtained from roving pullout tests. These parameters cannot be obtained by contemporary measuring techniques directly. A micro-meso-macro-prediction model (MMM-PM) for TRC is developed, predicting the macroscopic material behavior by means of simulations of the microscopic and the mesoscopic material behavior. The basis is the qualitative and quantitative identification of the bond properties of the roving-matrix system. The partial impregnation of the rovings and the corresponding varying bond qualities are identified to characterize the bond behavior of rovings in a fine-grained concrete matrix. The huge variety of roving cross-sections is approximated by superellipses on the meso scale. The macroscopic behavior of TRC subjected to tension including multiple cracking of the matrix material is correctly predicted on the basis of the micro- and meso-mechanical models. The calibration and verification of the MMM-PM is performed by simulations of roving pullout tests, whereas a first validation is carried out by a comparison of the numerical predictions with the experimental data from tensile tests. The MMM-PM for TRC is applied to tensile tests of structural members made of TRC. Furthermore, a steel-reinforced concrete plate strengthened by a TRC layer is accurately simulated yielding the macroscopic deflection of the plate, the mesoscopic stress state of the roving and the microscopic stresses of the filaments.
4

Zur hierarchischen und simultanen Multi-Skalen-Analyse von Textilbeton

Lepenies, Ingolf G. 15 November 2007 (has links)
Die Arbeit widmet sich der Simulation und der Prognose des Materialverhaltens des Hochleistungsverbundwerkstoffes Textilbeton unter Zugbeanspruchungen. Basierend auf einer hierarchischen mechanischen Modellbildung (Multi-Skalen-Analyse) werden die Tragmechanismen des Verbundwerkstoffes auf drei Strukturebenen abgebildet. Damit lassen sich die den Verbundwerkstoff charakterisierenden mechanischen Kenngrößen aus experimentell ermittelten Kraft-Verschiebungs-Abhängigkeiten ableiten. Diese Kenngrößen sind mit heutiger Messtechnik nicht direkt experimentell bestimmbar. Es wird ein Mikro-Meso-Makro-Prognosemodell (MMM-Prognosemodell) für Textilbeton entwickelt, das basierend auf der Simulation des Mikrostrukturverhaltens das makroskopische Materialverhalten prognostiziert. Die Grundlage dafür bildet die qualitative und quantitative Bestimmung der Verbundeigenschaften zwischen der Filamentbewehrung und der einbettenden Matrix. Für das Verbundverhalten von Rovings in einer Feinbetonmatrix wird, ausgehend von einer Rovingapproximation mit superelliptischem Querschnitt, die partielle Imprägnierung des Rovings und die daraus resultierende Verbundwirkung identifiziert und simuliert. Auf Grundlage der mikro- und mesomechanischen Modelle sowie der Kalibrierung und Verifizierung des MMM-Prognosemodells durch die Simulation von Filament- und Rovingauszugsversuchen wird das makroskopische Zugverhalten von Textilbeton mit Mehrfachrissbildung prognostiziert. Die numerischen Ergebnisse werden durch die Ergebnisse der experimentellen Dehnkörperversuche validiert. Das MMM-Prognosemodell für Textilbeton wird im Rahmen einer hierarchischen Multi-Skalen-Analyse auf Zugversuche von Textilbetonbauteilen angewendet. Weiterhin wird die Verstärkungswirkung einer Textilbetonschicht an Stahlbetonbauteilen unter Biegebeanspruchung zutreffend simuliert. Es wird das nichtlineare Bauteilverhalten abgebildet, wobei die Bauteildurchbiegung, die effektiven Rovingbeanspruchungen und die Beanspruchungen der Filamente im Roving abgebildet werden. / The present work deals with the simulation and the prediction of the effective material behavior of the high performance composite textile reinforced concrete (TRC) subjected to tension. Based on a hierarchical material model within a multi scale approach the load bearing mechanisms of TRC are modeled on three structural scales. Therewith, the mechanical parameters characterizing the composite material can be deduced indirectly by experimentally determined force displacement relations obtained from roving pullout tests. These parameters cannot be obtained by contemporary measuring techniques directly. A micro-meso-macro-prediction model (MMM-PM) for TRC is developed, predicting the macroscopic material behavior by means of simulations of the microscopic and the mesoscopic material behavior. The basis is the qualitative and quantitative identification of the bond properties of the roving-matrix system. The partial impregnation of the rovings and the corresponding varying bond qualities are identified to characterize the bond behavior of rovings in a fine-grained concrete matrix. The huge variety of roving cross-sections is approximated by superellipses on the meso scale. The macroscopic behavior of TRC subjected to tension including multiple cracking of the matrix material is correctly predicted on the basis of the micro- and meso-mechanical models. The calibration and verification of the MMM-PM is performed by simulations of roving pullout tests, whereas a first validation is carried out by a comparison of the numerical predictions with the experimental data from tensile tests. The MMM-PM for TRC is applied to tensile tests of structural members made of TRC. Furthermore, a steel-reinforced concrete plate strengthened by a TRC layer is accurately simulated yielding the macroscopic deflection of the plate, the mesoscopic stress state of the roving and the microscopic stresses of the filaments.

Page generated in 0.0394 seconds