• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A-type Potassium Channels in Dendritic Integration : Role in Epileptogenesis

Tigerholm, Jenny January 2009 (has links)
<p>During cognitive tasks, synchronicity of neural activity varies and is correlated with performance. However, there may be an upper limit to normal synchronised activity – specifically, epileptogenic activity is characterized byexcess spiking at high synchronicity. An epileptic seizure has a complicated course of events and I therefore focused on the synchronised activity preceding a seizure (fast ripples). These high frequency oscillations (200–1000 Hz) have been identified as possible signature markers of epileptogenic activity and may be involved in generating seizures. Moreover, a range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A–type potassium channel (KA). Our first objective was to investigate if KA could suppress synchronized input while minimally affecting desynchronised input. The second objective was to investigate if KA could suppress fast ripple activity. To study this I use a detailed compartmental model of a hippocampal CA1 pyramidal cell. The ion channels were described by Hodgkin–Huxley dynamics.</p><p>The result showed that KA selectively could suppress highly synchronized input. I further used two models of fast ripple input and both models showed a strong reduction in the cellular spiking activity when KA was present. In an ongoing in vitro brain slice experiment our prediction from the simulations is being tested. Preliminary results show that the cellular response was reduced by 30 % for synchronised input, thus confirming our theoretical predictions. By suppressing fast ripples KA may prevent the highly synchronised spiking activity to spread and thereby preventing the seizure. Many antiepileptic drugs down regulate cell excitability by targeting sodium channels or GABA–receptors. These antiepileptic drugs affect the cell during normal brain activity thereby causing significant side effects. KA mainly suppresses the spiking activity when the cell is exposed to abnormally high synchronised input. An enhancement in the KA current might therefore be beneficial in reducing seizures while not affecting normal brain activity.</p>
2

In vitro ηλεκτροφυσιολογική μελέτη των μηχανισμών διαφοροποίησης μεταξύ διαφραγματικού και κροταφικού ιπποκάμπου ως προς την παθογένεση της επιληψίας, την συναπτική ευπλαστότητα και τη δικτυακή ρυθμογένεση

Μόσχοβος, Χρήστος 22 September 2009 (has links)
Η λειτουργική διαφοροποίηση κατά το διαφραγματοκροταφικό άξονα του ιπποκάμπου αφορά και την επιληψία. Χρησιμοποιώντας το μοντέλο ελεύθερο μαγνησίου και δυναμικά πεδίου παρατηρήσαμε πως οι επιληπτόμορφες εκφορτίσεις παρατηρούνταν πιο συχνά, είχαν μεγαλύτερη συχνότητα, διάρκεια και ένταση στις κοιλιακές τομές. Ο ανταγωνιστής των NMDA υποδοχέων AP5 μείωσε τη διάρκεια μόνο στις κοιλιακές τομές. Η προσθήκη του NMDA προκάλεσε εμμένουσες επιληπτόμορφες εκφορτίσεις στο 51% των κοιλιακών και το 9% των ραχιαίων τομών. Προτείνουμε πως οι υποδοχείς NMDA συμμετέχουν στη μεγαλύτερη ευπάθεια του κοιλιακού ιπποκάμπου τόσο στην έκφραση όσο και στη μακρόχρονη διατήρηση των επιληπτόμορφων εκφορτίσεων. Για να μελετήσουμε την επιληπτογένεση με άρση του αδενοσινεργικού τόνου, χρησιμοποιήσαμε πρωτόκολλα εκλεκτικού ή μη αποκλεισμού των αδενοσινεργικών υποδοχέων σε συνθήκες ελεύθερες μαγνησίου και καταγράψαμε αυθόρμητα ή προκλητά δυναμικά πεδίου στη CA3 σε κοιλιακές και ραχιαίες τομές. O αποκλεισμός του Α1 προκάλεσε επιληπτογένεση στο 31,13% των ραχιαίων και στο 52,76% των κοιλιακών τομών (P<0,05). Ο σύγχρονος αποκλεισμός του NMDA υποδοχέα αύξησε τα ποσοστά επιληπτογένεσης και στους δυο πόλους (76,38% στις ραχιαίες τομές vs 80,68% στις κοιλιακές τομές). Αυτή η NMDA-ανεξάρτητη επιληπτογένεση μειώθηκε σημαντικά με την προσθήκη του ανταγωνιστή των Α2 υποδοχέων κυρίως στις ραχιαίες τομές. O αποκλεισμός του Α1 υποδοχέα σε συνθήκες αποκλεισμού των NMDA υποδοχέων προκάλεσε παρόμοια αύξηση της κλίσης του fEPSP στις ραχιαίες τομές και στις κοιλιακές τομές. Ο επιπλέον αποκλεισμός των Α2 υποδοχέων επανέφερε την κλίση του fEPSP στο αρχικό της μέγεθος μόνο στις ραχιαίες τομές. Ο σύγχρονος αποκλεισμός των Α1 και Α2 υποδοχέων προκάλεσε επιληπτογένεση πρακτικά μόνο στις κοιλιακές τομές. H επιληπτογένεση αυτή ήταν μερικώς NMDA-εξαρτώμενη. Επιπλέον ενώ ο αποκλεισμός του Α1 προκάλεσε αύξηση της επιφάνειας της καμπύλης του fEPSP σε συνθήκες ελεύθερες μαγνησίου μόνο στις ραχιαίες τομές (96,15%), ο σύγχρονος αποκλεισμός των Α1 και Α2 υποδοχέων προκάλεσε αύξηση κατά 196,62% στις ραχιαίες τομές και 105,26% στις κοιλιακές τομές. Συμπεραίνουμε πως ο εκλεκτικός ή μη αποκλεισμός των υποδοχέων της αδενοσίνης προκαλεί διαφορετικά είδη επιληπτογένεσης που οφείλονται στις διαφορετικές δράσεις των υποδοχέων της αδενοσίνης και την ικανότητα του κοιλιακού ιπποκάμπου για ΝMDA-εξαρτώμενη επιληπτογένεση Χρησιμοποιώντας δυναμικά πεδίου σε κοιλιακές τομές και δυο μοντέλα επιληπτογένεσης παρατηρήσαμε πως οι σχετιζόμενες με τις επιληπτόμορφες εκφορτίσεις υψίσυχνες ταλαντώσεις και η διεγερτική νευροδιαβίβαση συμμεταβάλονται κατά τη διάρκεια της επιληπτογένεσης Παθολογικές υψίσυχνες ταλαντώσεις παρατηρήθηκαν πάντα στην NMDA-εξαρτημένη αλλά όχι και την NMDA-ανεξάρτητη επιληπτογένεση. Η διάρκεια των υψίσυχνων ταλαντώσεων συσχετίστηκε με τη διάρκεια των μεσοκριτικών εκφορτίσεων μόνο μετά την επαγωγή της επιληπτογένεσης Χρησιμοποιώντας ερεθισμό 100Hz και αυξημένη συγκέντρωση καλίου επάγαμε LTP με ερεθισμό των παράπλευρων κλάδων στη CA3 σε συνθήκες αποκλεισμού των υποδοχέων NMDA. Ο νέος τύπος του NMDA-ανεξάρτητου αυτού LTP παρουσίασε αργή ανάπτυξη στο χρόνο, δε μετέβαλε τη διευκόλυνση με σύζευξη παλμών και δεν επαγόταν με ταυτόχρονο αποκλεισμό των ευαίσθητων στη νιφεδιπίνη διαύλων ασβεστίου. Το μέγεθος του LTP ήταν σημαντικά μεγαλύτερο στις ραχιαίες τομές σε σχέση με τις κοιλιακές. / Functional segregation along the dorso-ventral axis of the hippocampus refers to epilepsy too. Using the model of magnesium-free medium and field recordings, single epileptiform discharges displayed higher incidence, rate, duration and intensity in ventral compared with dorsal rat hippocampal slices. The NMDA receptor antagonist AP5 shortened the discharges in ventral slices only. At 5 and 10μΜ of NMDA application 51% of the ventral but only 9% of the dorsal slices displayed persistent epileptiform discharges. We propose that the NMDA receptors contribute to the higher susceptibility of the ventral hippocampus to expression and long-term maintenance of epileptiform discharges. To study epileptogenesis following withdrawal of adenosinergic tone we used models of selective or non-selective blockade of adenosine receptors in magnesium-free medium and we recorded spontaneous or evoked field potentials in CA3 in dorsal as well as ventral slices. Blockade of A1 resulted in epileptogenesis in 31,13% of dorsal and in 52,76% of ventral slices used (P<0,05). NMDAR blockade increased epileptogenesis scores in both poles (76,38% in dorsal slices vs 80,68% in ventral slices). This NMDAR-dependent epileptogenesis was significantly aborted by blockade of A2R more in dorsal slices. Blockade of A1R under conditions of NMDAR blockade resulted to a similar increase of fEPSP slope in dorsal and ventral slices. The additional blockade of A2R decreased fEPSP slope to its original value in dorsal slices only. Simultaneous blockade of A1 and A2 receptors induced epileptogenesis practically in ventral slices only. This epileptogenesis was partially NMDA-dependent. Futrhermore A1R blockade resulted to an increase of fEPSP area under conditions of magnesium-free medium in dorsal slices only, whereas simultaneous blockade of both A1 and A2 receptors to an increase by 196,62% in dorsal slices and by 105,26% in ventral slices. We conclude that the selective or not blockade of adenosine receptors induces different kinds of epileptogenesis and this can be attributed to the different actions of adenosine receptors and the capability of ventral hippocampus to support NMDA-dependent epileptogenesis Employing field recordings from ventral hippocampal slices and two models of epileptogenesis, we found that HFOs associated with epileptiform bursts and excitatory synaptic transmission were co-modulated during epileptogenesis Pathological HFOs>200Hz were unequivocally present in persistent bursts induced by NMDA receptor-dependent but not NMDA receptor-independent mechanisms. The duration of pathological HFOs associated with persistent bursts but not of HFOs associated with bursts before the establishment of epileptogenesis was linearly and strongly correlated with the duration of bursts. Using 100Hz trains and medium with a higher concentration of potassium cations we induced LTP by stimulating associational/commissural fibers in CA3 region under conditions of NMDA receptor blockade. This new type of NMDAR-independent LTP displayed slow kinetics, did not change paired pulse facilitation and was prevented by simultaneous blockade of nifedipine-sensitive calcium channels. The incidence as well as the amplitude of LTP was greater in dorsal slices compared to ventral ones.
3

A-type Potassium Channels in Dendritic Integration : Role in Epileptogenesis

Tigerholm, Jenny January 2009 (has links)
During cognitive tasks, synchronicity of neural activity varies and is correlated with performance. However, there may be an upper limit to normal synchronised activity – specifically, epileptogenic activity is characterized byexcess spiking at high synchronicity. An epileptic seizure has a complicated course of events and I therefore focused on the synchronised activity preceding a seizure (fast ripples). These high frequency oscillations (200–1000 Hz) have been identified as possible signature markers of epileptogenic activity and may be involved in generating seizures. Moreover, a range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A–type potassium channel (KA). Our first objective was to investigate if KA could suppress synchronized input while minimally affecting desynchronised input. The second objective was to investigate if KA could suppress fast ripple activity. To study this I use a detailed compartmental model of a hippocampal CA1 pyramidal cell. The ion channels were described by Hodgkin–Huxley dynamics. The result showed that KA selectively could suppress highly synchronized input. I further used two models of fast ripple input and both models showed a strong reduction in the cellular spiking activity when KA was present. In an ongoing in vitro brain slice experiment our prediction from the simulations is being tested. Preliminary results show that the cellular response was reduced by 30 % for synchronised input, thus confirming our theoretical predictions. By suppressing fast ripples KA may prevent the highly synchronised spiking activity to spread and thereby preventing the seizure. Many antiepileptic drugs down regulate cell excitability by targeting sodium channels or GABA–receptors. These antiepileptic drugs affect the cell during normal brain activity thereby causing significant side effects. KA mainly suppresses the spiking activity when the cell is exposed to abnormally high synchronised input. An enhancement in the KA current might therefore be beneficial in reducing seizures while not affecting normal brain activity.
4

Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure Detection

Qian, Chengliang 03 October 2013 (has links)
About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively. This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals. The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2. The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2. The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy.

Page generated in 0.066 seconds