• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 32
  • 13
  • 12
  • 12
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 183
  • 183
  • 119
  • 36
  • 36
  • 34
  • 33
  • 27
  • 27
  • 27
  • 25
  • 24
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Influência da austenita retida no crescimento de trincas curtas superficiais por fadiga em camada cementada de aço SAE 8620 / The influence of retained austenite on short fatigue crack growth in case carburized SAE 8620 steel

Silva, Valdinei Ferreira da 02 October 1997 (has links)
A austenita retida está sempre presente na microestrutura de camada cementada de aços, em maior ou menor quantidade. Como é uma fase dúctil comparada à martensita, sua presença tem sido alvo de muita controvérsia. Este trabalho apresenta um estudo sobre a influência da austenita retida na propagação de trincas curtas por fadiga em camada cementada de aço SAE 8620. Foram feitos ensaios de fadiga por flexão em quatro pontos, a temperatura ambiente, em corpos de prova sem entalhe com três níveis de amplitude de tensão e razão de tensões de 0,1. Através de diferentes ciclos de cementação e tratamentos térmicos, foram obtidas camadas cementadas com quatro níveis de austenita retida na microestrutura. O teor de austenita retida foi medido através da técnica de difração de Raios-X. Trincas superficiais foram monitoradas por meio da técnica de réplicas de acetato. Como resultados foram obtidos tamanho de trinca em função do número de ciclos e taxa de crescimento de trincas curtas. Corpos de prova com maiores níveis de austenita retida apresentaram maior vida em fadiga. / The retained austenite is always present in case carburized steel microstructure in small or high percentages. Since it is a ductile phase, its presence has long been a controversial subject. The influence of retained austenite on short fatigue crack propagation in case carburized SAE 8620 steel was studied in this work. Four-point-bend fatigue tests were carried out at room temperature in specimens without notch using three levels of stress range and a stress ratio of 0.1. Four different amount of retained austenite in the case carburized microstructure were obtained through different cycles of carburizing and heat treating. The retained austenite content was measured by X-ray technique, and the surface short crack growth was monitored by means of acetate replication technique. Crack length versus number of cycles and crack growth rate versus mean crack length were obtained as results. Specimens with higher levels of retained austenite in the carburized case showed longer fatigue life.
72

A Benchmark for Evaluating Performance in Visual Inspection of Steel Bridge Members and Strategies for Improvement

Leslie E Campbell (6620411) 10 June 2019 (has links)
<p></p><p>Visual inspection is the primary means of ensuring the safety and functionality of in-service bridges in the United States and owners spend considerable resources on such inspections. While the Federal Highway Administration (FHWA) and many state departments of transportation have guidelines related to inspector qualification, training, and certification, an inspector’s actual capability to identify defects in the field under these guidelines is unknown. This research aimed to address the knowledge gap surrounding visual inspection performance for steel bridges in order to support future advances in inspection and design procedures. Focusing primarily on fatigue crack detection, this research also considered the ability of inspectors to accurately and consistently estimate section loss in steel bridge members. </p> <p> </p> <p>Inspection performance was evaluated through a series of simulated bridge inspections performed in representative in-situ conditions. First, this research describes the results from 30 hands-on, visual inspections performed on full size bridge specimens with known fatigue cracks. Probability of Detection (POD) curves were fit to the inspection results and the 50% and 90% detection rate crack lengths were determined. The variability in performance was large, and only a small amount of the variance could be explained by individual characteristics or environmental conditions. Based on the results, recommendations for improved training methods, inspection procedures, and equipment were developed. Above all, establishment of a performance based qualification system for bridge inspectors is recommended to confirm that a satisfactory level of performance is consistently achieved in the field. </p> <p> </p> <p>Long term, managing agencies may eschew traditional hands-on bridge inspection methods in favor of emerging technologies imagined to provide improved results and fewer logistical challenges. This research investigated the potential for unmanned aircraft system (UAS) assistance during visual inspection of steel bridges. Using the same specimens as in the hands-on inspections, four UAS-assisted field inspections and 19 UAS-assisted desk inspections were performed. A direct comparison was made between performance in the hands-on and UAS-assisted inspections, as well as between performance in the two types of UAS-assisted inspections. Again, significant variability was present in the results suggesting that human factors continue to have a substantial influence on inspection performance, regardless of inspection method. </p> <p> </p> <p>Finally, to expand the findings from the crack detection inspections, the lower chord from a deck truss was used to investigate variability in the inspection of severely corroded steel tension members. Five inspectors performed a hands-on inspection of the specimen and four engineers calculated the load rating for the same specimen. Significant variability was observed in how inspectors recorded thickness measurements during the inspections and engineers interpreted the inspection reports and applied the code requirements. </p><br><p></p>
73

[en] INFLUENCE OF TEMPERED MARTENSITE ON THE FATIGUE LIFE OF STRUCTURAL STEEL FOR MOORING SYSTEMS / [pt] INFLUÊNCIA DA FRAÇÃO DE MARTENSITA REVENIDA NA VIDA EM FADIGA DE UM AÇO ESTRUTURAL COM APLICAÇÕES EM SISTEMAS DE ANCORAGEM

MARCOS ALEX CARNEIRO 02 July 2003 (has links)
[pt] O grande potencial exploratório em águas profundas motiva a busca de um conhecimento tecnológico necessário para viabilizar a exploração e produção em alto mar. Paralelamente à busca de novas tecnologias de exploração e produção, a diminuição do risco de falha estrutural em unidades de exploração do tipo offshore tornou-se uma preocupação constante do setor, uma vez que falhas estruturais podem significar elevados custos decorrentes da utilização parcial de equipamentos, manutenção extemporânea, parada de produção, perdas materiais e, principalmente, perdas humanas e danos ao ecossistema. Este trabalho apresenta um estudo sobre a influência da quantidade de martensita revenida sobre a cinética de propagação da trinca de fadiga em aço estrutural do tipo grau R4, largamente utilizado em componentes estruturais para sistemas de ancoragem de unidades flutuantes do tipo offshore, sendo fabricados por meio de soldagem por centelhamento. Corpos de prova do tipo CT foram usinados a partir do material de base e do material de solda e submetidos a tratamentos térmicos de têmpera em diferentes temperaturas de austenitização, sendo submetidos a tratamentos de revenido em temperatura única. A fim de promover uma comparação com a condição microestrutural industrial, corpos de prova também foram usinados de elos de amarras após procedimentos industriais de soldagem por centelhamento, têmpera e revenido. Posteriormente, num total de cinco condições microestruturais, os corpos de prova foram ensaiados sob condições cíclicas de carregamento, objetivando a determinação das curvas de crescimento de trinca (a versus N and da/dN versus DK curves). Os resultados do desempenho em fadiga do material demonstram que a diminuição da quantidade de martensita revenida resultou no aumento da vida útil em fadiga do material, que a condição industrial está associada com a menor resistência à fadiga observada e que a vida em fadiga do material depende da posição de retirada do corpo de prova. / [en] The great explor atory potential in deep waters has led companies in the oil sector to search for the necessary technological improvement to make the offshore exploration and production feasible. In parallel to searching for new technologies, the reduction in risks of structural failure has become the sector s constant practice, considering that such failures mean high costs due to partial use of equipments, extemporary maintenance, production stops, material losses and, mainly, damage to the ecosystem and loss of lives. A study has been made concerning the influence of the fraction of tempered martensite on the kinetics of fatigue crack growth in a grade R4 structural steel, largely used for fabricating offshore mooring chains by means of flash welding. CT specimens were machined from the base material as well as the welded joints and subjected to quenching from different austenizing temperatures and tempering at a given temperature. Aiming at the comparison with the material in industrial condition, CT specimens were also machined from chain links after flash welding, quenching and tempering under industrial conditions. After that, in a total of five microstructural conditions, the specimens were cyclically loaded in order to obtain the fatigue crack growth curves (a versus N and da/dN versus DK curves). The results show that the fatigue life of the material has increased when decreasing the fraction of tempered martensite, the industrial condition is associated with the smallest fatigue resistance and the fatigue life depends on the position where the fatigue specimens were taken form the chain like.
74

Rate-dependent cohesive-zone models for fracture and fatigue

Salih, Sarmed January 2018 (has links)
Despite the phenomena of fracture and fatigue having been the focus of academic research for more than 150 years, it remains in effect an empirical science lacking a complete and comprehensive set of predictive solutions. In this regard, the focus of the research in this thesis is on the development of new cohesive-zone models for fracture and fatigue that are afforded an ability to capture strain-rate effects. For the case of monotonic fracture in ductile material, different combinations of material response are examined with rate effects appearing either in the bulk material or localised to the cohesive-zone or in both. The development of a new rate-dependent CZM required first an analysis of two existing methods for incorporating rate dependency, i.e.either via a temporal critical stress or a temporal critical separation. The analysis revealed unrealistic crack behaviour at high loading rates. The new rate-dependent cohesive model introduced in the thesis couples the temporal responses of critical stress and critical separation and is shown to provide a stable and realistic solution to dynamic fracture. For the case of fatigue, a new frequency-dependent cohesive-zone model (FDCZM) has been developed for the simulation of both high and low-cycle fatigue-crack growth in elasto-plastic material. The developed model provides an alternative approach that delivers the accuracy of the loading-unloading hysteresis damage model along with the computational efficiency of the equally well-established envelope load-damage model by incorporating a fast-track feature. With the fast-track procedure, a particular damage state for one loading cycle is 'frozen in' over a predefined number of cycles. Stress and strain states are subsequently updated followed by an update on the damage state in the representative loading cycle which again is 'frozen in' and applied over the same number of cycles. The process is repeated up to failure. The technique is shown to be highly efficient in terms of time and cost and is particularly effective when a large number of frozen cycles can be applied without significant loss of accuracy. To demonstrate the practical worth of the approach, the effect that the frequency has on fatigue crack growth in austenitic stainless-steel 304 is analysed. It is found that the crack growth rate (da/dN) decreases with increasing frequency up to a frequency of 5 Hz after which it levels off. The behaviour, which can be linked to martensitic phase transformation, is shown to be accurately captured by the new FDCZM.
75

A MICROSTRUCTURE-BASED MODEL VALIDATED EXPERIMENTALLY FOR QUANTIFICATION OF SHORT FATIGUE CRACK GROWTH IN THREE-DIMENSIONS

Cai, Pei 01 January 2018 (has links)
Built on the recent successes in understanding the crystallographic mechanism for short fatigue crack (SFC) growth across a grain boundary (GB) and developing an experimental method to quantify the GB resistance against short crack growth, a microstructure-based model was developed in this study to simulate the growth behaviors of SFCs in 3-D, by taking into account both the driving force and resistance along at each point along the crack front in an alloy. It was found that the GB resistance was a Weibull function of the minimum twist angle of crack deflection at the boundary in AA2024-T3 Al alloys. In the digital microstructure used in the model, the resistance at each GB that the short crack interacted with could be calculated, as long as the orientations of grains and the crack were known. In the model, an influence function accounting for the overlapping effect of the resistance from the neighboring grain boundaries was proposed, allowing for calculation of the total resistance distribution along the crack front. In order to overcome the time consuming problem for the existing equations to derive the distribution of stress intensity factor along the crack front under cyclic loading, an analytical equation was proposed to quantify the stress intensity factor distribution along an irregular shape planar crack. By introducing two shape-dependent factors, the fractured area and the perimeter of the crack front, the newly proposed equation could readily and accurately derive the stress intensity factor distribution along the crack front that had large curvatures and singularities. Finally, a microscopic-scale Paris’ equation was proposed that took into account both the driving force, i.e., stress intensity factor range, and the total resistance to calculate the growth rate at each point along crack front. The model developed in this work was able to incorporate microstructure, such as grain size and shape, and texture into simulation of SFC growth in 3-D. It was capable of simulating all the anomalous growth behaviors of SFCs, such as the marked scatters in growth rate measurement, retardation and arrest at grain boundaries, and crack plane deflection at grain boundaries, etc. The model was used to simulate the growth behaviors of SFCs initiated from prefractured constituent particles in order to interpret the multi-site fatigue crack initiation observed in AA2024-T351 Al alloys. Three types of SFCs were observed initiating from these particles, namely, type-I non-propagating cracks; type-II cracks which were arrested soon after propagating into the matrix; and type-III propagating cracks. To quantitatively study the 3-D effects of particle geometry and micro-texture on the growth behaviors of micro-cracks in these particles, rectangular micro-notches with different dimensions were fabricated using focused ion beam in the selected grains on the T-S planes in AA2024-T351 Al alloys, to mimic the pre-fractured particles in these alloys. Knowing the notch dimensions or particle shape, grain orientation and GB geometry, the simulated crack growth behaviors were consistent with the experimental observations, and the model was able to verify that the three types of cracks evolved from these particles were mainly associated with the thickness and width of the pre-fractured particles, though the particle geometry and grain orientation could also affect the behaviors of fatigue crack initiation at the particles. When the widths of the particles were less than 15 μm, like in most high strength Al alloys, the simulated results confirmed that the crack type was only associated with the particle thickness, consistent with the experimental results in AA2024-T351 alloys with a strong rolling texture. The lives for the SFCs to reach 0.5 mm in length were quantified with the model in the AA2024 alloy, revealing that there was a bimodal distribution in the life spectrum calculated, with the longer life peak being related to larger twist angles of crack deflection at the first GB the cracks encountered and the shorter life peak being associated with small twist angles (< 5°) at the first GB. The model further demonstrated the influence of grain structure on SFC growth by considering two different grain structures with the same initial short crack, namely, a layered grain structure with only the primary GBs perpendicular to the surface and the layered grains with both primary and secondary GBs. Depending on their positions and geometry, the secondary GBs could still exert a strong retarding effect on SFC growth on surface. The model was validated by matching to the growth rate measured on surface of a SFC in an AA8090 Al-Li alloy. Good consistency was achieved between the simulated and experimentally measured growth rates when both the primary and secondary GBs were considered in the model. The model developed in this study exhibits its potential applications to optimizing the microstructure and texture in alloys to enhance their fatigue resistance against fatigue crack growth, and to satisfactory life prediction of engineering alloys.
76

Growth of fatigue cracks subjected to non-proportional Mode I and II

Dahlin, Peter January 2005 (has links)
This thesis deals with some aspects of crack growth in the presence of cyclic loading, i.e. fatigue. The cyclic load cases studied here are primary of non-proportional mixed mode type. Under non-proportional loading the principal stress directions rotate and, generally, the ratio between the principal stresses vary. A new criterion has been presented for prediction of incipient crack path direction after changes in load from steady Mode I to non-proportional loading. The criterion is based on FE-simulations which are used to compute the actual elasto-plastic stress state in the vicinity of the crack tip. The predictions of the criterion capture several phenomena observed in the literature, which indicates that plasticity effects have to be included in a criterion for crack path predictions under non-proportional loading. The effects of Mode II overloads on subsequent Mode I crack growth have been studied relatively little in the literature. Also, the results deviates substantially. In the present thesis, this load case has been investigated in detail, both experimentally and analytically. The results show that the Mode I crack growth rate decreases after a single Mode II load, if the R-ratio is not as high as to keep the entire Mode I load cycle above the closure level. This is based on the fact, shown in this thesis, that the reduction is caused by crack closure due to tangential displacement of crack-surface irregularities. A new loading device is presented. With this device, it is possible to apply sequential loading in Mode I and Mode II in an automated way, without having to dismount the specimens. This loading device is used to study the influence of periodic Mode II loading on Mode I crack growth. The main parameters concerning the influence of periodic Mode II loading on Mode I crack growth are; (i) the Mode I R-ratio, (ii) the Mode II magnitude and (iii) the Mode II periodicity, M (number of Mode I loads for every Mode II load). The mechanisms involved are mainly RICC (Roughness-Induced Crack Closure) and a Mode II mechanism that increases the growth rate temporary at every Mode II load. Hence, the latter becomes more significant for low M-values. The higher the Mode I R-ratio the smaller is the reduction. / QC 20101004
77

Mode Ii Fatigue Crack Growth Behavior And Mode Ii Fracture Toughness Of 7050 Aluminum Alloy In Two Orientations

Yurtoglu, Mine Ender 01 January 2013 (has links) (PDF)
Fatigue crack growth behavior of AA7050 T7451 aluminum alloy under mode II loading condition in two orientations was investigated. Compact shear specimens were prepared in TL and LT directions. A loading frame for mode II type of loading was manufactured. Using the loading frame and the specimen, KIIC values and mode II fatigue crack growth rates were calculated. Fractographic analysis of the fracture surfaces of both mode II fracture toughness test specimens and mode II fatigue crack growth test specimens were done to examine the effects of mode II load. KIIC values were measured between 1.3 and 1.5 times the KIC values for this alloy. As for mode II fatigue crack growth rates, TL orientation shows the highest mode II fatigue crack growth resistance.
78

Study of Interfacial Crack Propagation in Flip Chip Assemblies with Nano-filled Underfill Materials

Mahalingam, Sakethraman 19 July 2005 (has links)
No-flow underfill materials that cure during the solder reflow process is a relatively new technology. Although there are several advantages in terms of cost, time and processing ease, there are several reliability challenges associated with no-flow underfills. When micron-sized filler particles are introduced in no-flow underfills to enhance the solder bump reliability, such filler particles could prevent the solder bumps making reliable electrical contacts with the substrate pads during solder reflow, and therefore, the assembly yield would be adversely affected. The use of nano-sized filler particles can potentially improve assembly yield while offering the advantages associated with filled underfill materials. The objective of this thesis is to study the thermo-mechanical reliability of nano-filled epoxy underfills (NFU) through experiments and theoretical modeling. In this work, the thermo-mechanical properties of NFUs with 20-nm filler particles have been measured. An innovative residual stress test method has been developed to measure the interfacial fracture toughness. Using the developed residual stress method and the single-leg bending test, the mode-mixity-dependent fracture toughness for NFU-SiN interface has been determined. In addition to such monotonic interfacial fracture characterization, the interface crack propagation under thermo-mechanical fatigue loading has been experimentally characterized, and a model for fatigue interface crack propagation has been developed. A test vehicle comprising of several flip chips was assembled using the NFU material and the reliability of the flip-chip assemblies was assessed under thermal shock cycles between -40oC and 125oC. The NFU-SiN interfacial delamination propagation and the solder bump reliability were monitored. In parallel, numerical models were developed to study the interfacial delamination propagation in the flip chip assembly using conventional interfacial fracture mechanics as well as cohesive zone modeling. Predictions for interfacial delamination propagation using the two approaches have been compared. Based on the theoretical models and the experimental data, guidelines for design of NFUs against interfacial delamination have been developed.
79

Fatigue Crack Growth Behaviour Of Aa6013 Aluminum Alloy At Different Aging Conditions

Varli, Aziz Egemen 01 August 2006 (has links) (PDF)
The effect of different aging treatments on fatigue crack growth behavior of AA6013 aluminum alloy was investigated. C(T) (Compact Tension) specimens were prepared in L-T and T-L direction for fatigue crack growth tests. Samples were in T651 as received, T42 which is solution heat treated at 538 &ordm / C for 90 minutes, water quenched and aged in room temperature for 96 hours, and one group of samples were overaged at 245 &ordm / C for 12 hours after T42 condition was achieved. Hardness and conductivity measurements were achieved for all conditions after the heat treatments. Fatigue crack growth tests were performed at as received condition T651, T42 and 245 &ordm / C aged samples in laboratory air with sinusoidal loading of stress ratio R=0.1 and at a frequency of 1 Hz. The highest fatigue crack growth resistance is observed for T651 T-L and 245 &ordm / C overaged L-T condition.
80

Microstructural And Mechanical Characterization Of Duplex Stainless Steel Grade 2205 Joined By Hybrid Plasma And Gas Metal Arc Welding

Tolunguc, Burcu 01 January 2012 (has links) (PDF)
In the present study, the applicability of the hybrid plasma arc welding, in which a keyhole is responsible of deep penetration and a filler wire electrode supplies a high deposition rate, was examined. The microstructural evolutions in grade 2205 duplex stainless steel plates joined by keyhole and melt-in techniques were investigated. The specimens obtained from welded plates having thickness of 8 mm were examined via optical and scanning electron microscopy. Metallographic investigations were supported by X-ray diffraction and energy dispersed spectra analyses by characterizing the phases formed after welding. Impact toughness properties, hardness profiles, and crack propagation behavior of welding zones were quantitatively and qualitatively compared for mechanical characterization. Fracture characteristics were determined via scanning electron microscopy examinations. It was observed that single-pass HPA weldment seemed to be free of secondary austenite precipitation in acicular form, which is inevitable in multi-pass conventional arc welding methods. Besides &delta / -ferrite was successfully kept under 70%, which is presented as a limit to not to deteriorate the mechanical properties of DSS. High linear welding speed and high power density supplied by HPAW presented narrower weld metal and heat affected zone with not only lower hardness but also higher impact toughness energies. Synergic effect of the keyhole formed by a plasma arc and the metal transfer supplied by gas metal arc gave reasonable dilution in the weld metal. Furthermore, fatigue crack growth tests revealed that crack propagation rates in HPAW joints were comparable to GMAW joints.

Page generated in 0.0554 seconds