Spelling suggestions: "subject:"fatty acid amide hydrolase"" "subject:"patty acid amide hydrolase""
11 |
Biochemical Characterization of Fatty Acid Amide Hydrolase in Physcomitrella PatensSwati, Swati, Kilaru, Aruna 08 April 2015 (has links)
N-acylethanolamines (NAEs) are a group of fatty acid ethanolamides and their metabolic pathway is highly conserved in eukaryotes. However, metabolites such as NAE 20:4 (anandamide) are known to occur in mammalian systems but not in higher plants. Anandamide is an endocannabinoid receptor ligand and mediates stress responses and regulates various physiological processes such as neuroprotection, pain perception and appetite suppression in animals. Interestingly anandamide occurrence was recently reported in a highly stress tolerant early land plant, Physcomitrella patens but its physiological role remains to be elucidated. Since NAEs including anandamide are degraded by fatty acid amide hydrolase (FAAH), it is hypothesized that a functional homolog of FAAH occurs in P. patens. To test this hypothesis, arabidopsis FAAH homolog was used to search moss database using BLASTP. Eight putative FAAH candidates (PpFAAH1-8), with an amidase signature sequence and conserved catalytic sites, were identified. Among these, PpFAAH1 and PpFAAH2 responded to exogenous NAE, and their 3D predicted protein structure closely resembled to that of AtFAAH1. The 1.8Kb coding region of putative PpFAAH1 was chosen for further characterization and was PCR amplified, cloned into TrcHis2 expression vector and transformed into E. coli TOP10 cells. Upon confirmation of the positive clones and induction of proteins, expressed proteins will be purified by Ni+2 affinity column chromatography, confirmed by western blot and analyzed for its substrate specificity using radiolabelled anandamide. Lipids extracted from reaction mixture will be separated by thin layer chromatography and detected by radiometric scanning. Characterization of the enzyme that hydrolyzes anandamide in moss is expected to lead us to develop NAE metabolite mutants that will subsequently allow us to study the physiological role of anandamide in early land plants.
|
12 |
Biochemical Characterization of Fatty Acid Amide Hydrolase in Physcomitrella PatensSwati, Swati, Kilaru, Aruna 01 January 2015 (has links)
No description available.
|
13 |
Identification and Characterization of Fatty Acid Amide Hydrolase (FAAH) in Physcomitrella PatensKinser, Brent, Kilaru, Aruna 01 January 2013 (has links)
No description available.
|
14 |
Identification and Characterization of Fatty Acid Amide Hydrolase (FAAH) in Physcomitrella PatensKinser, Brent, Kilaru, Aruna 01 January 2013 (has links)
No description available.
|
15 |
Biochemical Characterization of Tomato Fatty Acid Amide HydrolaseShrestha, Sujan 01 August 2018 (has links) (PDF)
Fatty acid amide hydrolase (FAAH) is an enzyme that terminates the signaling role played by the lipid mediators, N- acylethanolamines (NAEs), present both in plants and animals. FAAH is responsible for NAE hydrolysis and has been extensively studied in mammalian systems and the model plant Arabidopsis thaliana; it has been reported in various organisms as well as some crop plants such as rice and Medicago truncatula. To understand the role of FAAH in diverse organisms, here we report the identification and biochemical characterization of a FAAH homolog in tomato. Previously identified and cloned candidate FAAH from tomato was expressed in Escherichia coli as a fused protein with 6X his-tag for identification. Supernatant containing recombinant FAAH showed the ability to hydrolyze NAE substrates. The optimal reaction conditions for enzyme assay and kinetic parameters for tomato FAAH were determined and effect of inhibitor on enzyme was determined. Characterization of FAAH in tomato will contribute to further understanding of NAE metabolic pathway and its implications.
|
16 |
Discriminative Stimulus Properties of Endogenous Cannabinoid Degradative Enzyme InhibitorsOwens, Robert, II 01 January 2016 (has links)
Inhibition of fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), the chief degradative enzymes of N-arachidonoyl ethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), respectively, elicits no or partial substitution for Δ9-tetrahydrocannabinol (THC) in drug discrimination procedures. However, combined inhibition of both enzymes fully substitutes for THC, as well as produces a full constellation of cannabimimetic effects. Because no published report to date have investigated whether an inhibitor of endocannabinoid hydrolysis will serve as a discriminative stimulus, the purpose of this doctoral dissertation was to investigate whether C57BL/6J mice would learn to discriminate SA-57 (4-[2-(4-Chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester), a dual inhibitor of FAAH and MAGL, from vehicle in the drug discrimination paradigm. Also, we sought to determine whether inhibiting both enzymes, or inhibiting one enzyme was necessary to generate the SA-57 discriminative stimulus. Initial experiments showed that SA-57 fully substituted for either CP 55,940 ((-)-cis-3-[2-Hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol), a high efficacy CB1 receptor agonist in C57BL/6J, mice or AEA in FAAH (-/-) mice. The majority (i.e., 23 of 24) of subjects achieved criteria of discriminating SA-57 (10 mg/kg) from vehicle within 40 sessions, with full generalization occurring 1-2 h post injection. CP 55,940, the dual FAAH-MAGL inhibitor JZL195 (4-nitrophenyl 4-(3-phenoxybenzyl)piperazine-1-carboxylate), the MAGL inhibitors MJN110 (2,5-dioxopyrrolidin-1-yl 4-(bis(4-chlorophenyl)methyl)piperazine-1-carboxylate) and JZL184 (4-[Bis(1,3-benzodioxol-5-yl)hydroxymethyl]-1-piperidinecarboxylic acid 4-nitrophenyl ester) fully substituted for SA-57. Although, the FAAH inhibitors PF-3845 and URB597 did not substitute for SA-57, PF3845 produced a two-fold leftward shift in the MJN110 substitution dose-response curve. In addition, the CB1 receptor antagonist rimonabant blocked the generalization of SA-57 as well as substitution of CP 55,940, JZL195, MJN110, JZL184 for the SA-57 discriminative stimulus. These findings taken together indicate that the inhibition of endocannabinoid-regulating enzymes serve as breaks to prevent overstimulation of CB1 receptors, and MAGL inhibition is the major driving force for generating the SA-57 discriminative stimulus.
|
17 |
Characterisation of fatty acid amide hydrolase as a potential therapeutic target in Multiple SclerosisGraves, Ryan Stanley January 2013 (has links)
Multiple sclerosis (MS) is a demyelinating neurodegenerative disease that typically has a relapsing-remitting pattern of progression superimposed on a gradual worsening of disease symptoms. Experimental autoimmune encephalomyelitis (EAE) is a model of MS where animals develop relapses, demyelination and accumulate neurological deficits. Studies using the EAE model have provided evidence that cannabinoids are beneficial in reducing disease symptoms and may impact long term neurodegeneration, but side-effects of exogenous cannabinoid receptor agonists may limit their potential as therapeutic agents for MS. Targeting enzymes involved in degradation of endocannabinoids such as the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH) may be an attractive alternative strategy. Using experimental allergic encephalomyelitis (EAE) as a mouse model of MS, two complementary approaches were used to assess FAAH as a potential therapeutic target. The FAAH deficient (ABH.FAAH-/-) developed similar paralytic relapsing disease of similar severity of disease compared to the wild-type, but showed a poorer recovery following the acute phase. However, following a relapsing-remitting disease course, the FAAH deficient mice showed a substantial improvement in clinical score, improved motor control, and lost less neurofilament compared to wild-type mice. These findings indicate that fatty acid amides may be neuroprotective in EAE. Secondly, a selective FAAH inhibitor (PF-3845; 10 mg/kg) was used to treat mice during the relapse phase of the disease course. Treatment with PF-3845 caused an elevation of anandamide in the CNS. This treatment resulted in a small reduction in neurofilament loss, but no reduction in clinical score or improvement in motor control was observed compared to the vehicle treated group. To investigate at a cellular level how FAAH might affect disease progression in the EAE model, immunohistochemistry was used to analyse FAAH expression in the CNS. Employing novel antibodies to FAAH in combination with neuronal and glial cell markers, it was found that, in addition to previously reported neuronal expression of FAAH, FAAH is highly expressed 3 in oligodendrocytes, but not in other glial cell types. Thus, genetic deletion or pharmacological inhibition of FAAH may affect both neuronal activity and oligodendroglial function (e.g. myelination). The role of FAAH in oligodendrocytes was investigated in vitro. An oligodendrocyte precursor cell (OPC) monoculture was used to monitor differentiation, and a co-culture comprising neurons and OPCs was used to monitor myelination. During the differentiation of OPCs, FAAH expression was detected in the entire oligodendroglia lineage, but with high expression only in mature myelin basic protein (MBP) expressing cells. Treatment with the FAAH inhibitor PF-3845 (0.1 μM to 1 μM) increased differentiation of OPCs into mature oligodendrocytes. However, the same treatment of co-cultures had no effect on the myelination of neurites. In conclusion, this study has: i) obtained evidence that genetic deletion of FAAH is neuroprotective in a mouse model of MS and ii) provided new insights on FAAH expression in the CNS. Further investigation of FAAH, in particular its role(s) in oligodendrocytes, will be required to fully unlock the therapeutic potential of FAAH inhibition in the treatment of MS.
|
18 |
Isolation and Heterologous Expression of Putative Tomato Fatty Acid Amide HydrolaseTiwari, Vijay 01 December 2016 (has links)
N-acylethanolamines (NAEs) are derived from a minor membrane lipid constituent N-acylphosphatidylethanolamine and are hydrolyzed by fatty acid amide hydrolases (FAAH) into free fatty acid (FFA) and ethanolamine in both plants and animals. In Arabidopsis, NAE plays an important physiological role in growth/development and response to stress. Although NAEs are reported in tomato, their metabolic pathway remains undiscovered. It is hypothesized that there is a functional FAAH in tomato that hydrolyzes NAEs. To this extent, a putative gene that likely encodes for putative SlFAAH1 protein was identified, cloned, and heterologously expressed. Amidase activity was tested using radiolabeled NAE substrates. Furthermore, expression of putative SlFAAH1 transcripts and protein activity was quantified at different developmental stages to demonstrate endogenous amidase activity in tomato seedlings. In future, molecular and biochemical characterization of tomato FAAH will further test the conserved nature of NAE metabolic pathway in plants.
|
19 |
The cellular processing of the endocannabinoid anandamide and its pharmacological manipulationThors, Lina January 2009 (has links)
Anandamide (arachidonoyl ethanolamide, AEA) and 2-arachidonoyl glycerol (2-AG) exert most of their actions by binding to cannabinoid receptors. The effects of the endocannabinoids are short-lived due to rapid cellular accumulation and metabolism, for AEA, primarily by the enzymes fatty acid amide hydrolase (FAAH). This has led to the hypothesis that by inhibition of the cellular processing of AEA, beneficial effects in conditions such as pain and inflammation can be enhanced. The overall aim of the present thesis has been to examine the mechanisms involved in the cellular processing of AEA and how they can be influenced pharmacologically by both synthetic natural compounds. Liposomes, artificial membranes, were used in paper I to study the membrane retention of AEA. The AEA retention mimicked the early properties of AEA accumulation, such as temperature-dependency and saturability. In paper II, FAAH was blocked by a selective inhibitor, URB597, and reduced the accumulation of AEA into RBL2H3 basophilic leukaemia cells by approximately half. Treating intact cells with the tyrosine kinase inhibitor genistein, an isoflavone found in soy plants and known to disrupt caveolae-related endocytosis, reduced the AEA accumulation by half, but in combination with URB597 no further decrease was seen. Further on, the effects of genistein upon uptake were secondary to inhibition of FAAH. The ability to inhibit the accumulation and metabolism of AEA was shared by several flavonoids (shown in paper III). In paper IV, the isoflavone biochanin A and URB597 had effects in vivo, in a model of persistent pain, effects decreased by the cannabinoid receptor 1 antagonist AM251. In paper VI, the cellular processing of the endocannabinoid metabolites following degradation was examined, a mechanism poorly understood. It was found that nitric oxide (NO) donors significantly increased the retention of tritium in cell membranes following incubation with either tritiated AEA or 2-AG. Further experiments revealed that the effect of NO donors mainly involves the arachidonate part of the molecules. Inhibition of FAAH completely reduced the effect of NO donors in cells with a large FAAH component, indicating that the effects were downstream of the enzyme. These results suggest that the cellular processing of endocannabinoids can be affected in a manner of different ways by pharmacological manipulation in vitro and that naturally occurring flavonoid compounds can interact with the endocannabinoid system.
|
20 |
Functional Characterization of Plant Fatty Acid Amide HydrolasesKim, Sang-Chul 12 1900 (has links)
Fatty acid amide hydrolase (FAAH) terminates the endocannabinoid signaling pathway that regulates numerous neurobehavioral processes in animals by hydrolyzing a class of lipid mediators, N-acylethanolamines (NAEs). Recent identification of an Arabidopsis FAAH homologue (AtFAAH) and several studies, especially those using AtFAAH overexpressing and knock-out lines suggest that a FAAH-mediated pathway exists in plants for the metabolism of endogenous NAEs. Here, I provide evidence to support this concept by identifying candidate FAAH cDNA sequences in diverse plant species. NAE amidohydrolase assays confirmed that several of the proteins encoded by these cDNAs indeed catalyzed the hydrolysis of NAEs in vitro. Kinetic parameters, inhibition properties, and substrate specificities of the plant FAAH enzymes were very similar to those of mammalian FAAH. Five amino acid residues determined to be important for catalysis by rat FAAH were absolutely conserved within the plant FAAH sequences. Site-directed mutation of each of the five putative catalytic residues in AtFAAH abolished its hydrolytic activity when expressed in Escherichia coli. Contrary to overexpression of native AtFAAH in Arabidopsis that results in enhanced seedling growth, and in seedlings that were insensitive to exogenous NAE, overexpression of the inactive AtFAAH mutants showed no growth enhancement and no NAE tolerance. However, both active and inactive AtFAAH overexpressors displayed hypersensitivity to ABA, suggesting a function of the enzyme independent of its catalytic activity toward NAE substrates. Yeast two-hybrid screening identified Arg/Ser-rich zinc knuckle-containing protein as a candidate protein that physically and domain-specifically interacts with AtFAAH and its T-DNA knock-out Arabidopsis was hypersensitive to ABA to a degree similar to AtFAAH overexpressors. Taken together, AtFAAH appears to have a bifurcating function, via NAE hydrolysis and protein-protein interaction, to control Arabidopsis growth and interaction with phytohormone signaling pathways. These studies help to functionally define the group of enzymes that metabolize NAEs in plants, and further will expand the knowledge-base of lipid metabolism and signaling for manipulation of various physiological processes important to plant growth and responses to environmental stress.
|
Page generated in 0.1964 seconds