Spelling suggestions: "subject:"acylphosphatidylethanolamine"" "subject:"nacylphosphatidylethanolamine""
1 |
Cloning of N-acylethanolamine Metabolic Pathway Genes from Physcomitrella patensSwati, Swati 01 May 2017 (has links)
N-acylethanolamines (NAEs) including anandamide are lipid derivative molecules, which play vital roles in physiological and developmental processes in plants and animals and mediate stress responses. In mammals, NAEs are synthesized from hydrolysis of their precursor molecule N-acylphosphatidylethanolamine (NAPE) by NAPE-specific phospholipaseD (NAPE-PLD). All NAEs including anandamide (NAE20:4) are hydrolyzed by fatty acid amide hydrolase (FAAH) into free fatty acid and ethanolamine. To date, different NAEs including anandamide have been identified in Physcomitrella patens but its metabolic pathway remains undiscovered. It is hypothesized that NAE metabolic pathway in P. patens is conserved and is similar to that of other eukaryotic systems. To this extent, putative PpNAPE-PLD and PpFAAH were identified and cloned for heterologous expression and characterization. Expression of PpFAAH was further verified by Western blot analysis. Future studies will involve biochemical characterization of putative PpNAPE-PLD and PpFAAH, to establish the evolutionarily conserved nature of NAE functions in early land plants.
|
2 |
Subcellular Localization of N-acylphosphatidyl-ethanolamine Synthase in Cotyledons of Cotton SeedlingsSriparameswaran, Anuja 12 1900 (has links)
N-acylation of phosphatidylethanolamine (PE) with free fatty acids catalyzed by N-acyl phosphatidylethanolamine (NAPE) synthase was reported in cotyledons of 24-h-old cotton seedlings. Here I report subcellular localization of this enzyme. Differential centrifugation, sucrose density gradient fractionation,aqueous two-phase partitioning and electron microscopy techniques were utilized to elucidate subcellular site(s) of NAPE synthase. Marker enzymes were used to locate organelles in subcellular fractions. Differential centrifugation indicated that NAPE synthase is present in more than one organelle and it is a membrane bound enzyme. Sucrose density gradient fractionations indicated that NAPE synthase is present in membranes derived from endoplasmic reticulum (ER),Golgi and possibly plasma membrane (PM) but not mitochondria, glyoxysomes or plastids. Aqueous two-phase partitioning experiments with cotton and spinach tissues supported these results but Goigi appeared to be the major site of NAPE synthesis. Electron microscopy of subcellular fractions was used to examine isolated fractions to provide visual confirmation of our biochemical results. Collectively, these results indicate that NAPE is synthesized in plant ER, Golgi and possibly PM.
|
3 |
Isolation and Heterologous Expression of Putative Tomato Fatty Acid Amide HydrolaseTiwari, Vijay 01 December 2016 (has links)
N-acylethanolamines (NAEs) are derived from a minor membrane lipid constituent N-acylphosphatidylethanolamine and are hydrolyzed by fatty acid amide hydrolases (FAAH) into free fatty acid (FFA) and ethanolamine in both plants and animals. In Arabidopsis, NAE plays an important physiological role in growth/development and response to stress. Although NAEs are reported in tomato, their metabolic pathway remains undiscovered. It is hypothesized that there is a functional FAAH in tomato that hydrolyzes NAEs. To this extent, a putative gene that likely encodes for putative SlFAAH1 protein was identified, cloned, and heterologously expressed. Amidase activity was tested using radiolabeled NAE substrates. Furthermore, expression of putative SlFAAH1 transcripts and protein activity was quantified at different developmental stages to demonstrate endogenous amidase activity in tomato seedlings. In future, molecular and biochemical characterization of tomato FAAH will further test the conserved nature of NAE metabolic pathway in plants.
|
4 |
Occurrence and Implications of the N-Acylethanolamine Metabolic Pathway in Physcomitrella patensSante, Richard R. T. 01 May 2014 (has links)
N-acylethanolamines (NAEs) with C12-C18 acyl chain are ubiquitous in seed plants and play a role in mediating abscisic acid (ABA)-dependent or -independent responses to stress. In moss Physcomitrella patens, using selective lipidomics approach, we recently identified the occurrence of anandamide or N-arachidonylethanolamide (NAE 20:4) and its precursors that were previously not reported in plants. Occurrence of anandamide in moss provides us with a unique opportunity to address if early land plants retained NAE-mediated signaling mechanism that is akin to animals but not to vascular plants. It is hypothesized that a distinctive NAE profile and metabolic pathway occurs in P. patens. To this extent, putative genes that might be responsible for anandamide metabolic pathway were identified and their expression levels were determined for three developmental stages of moss. The NAE metabolite levels and transcript levels for putative genes were higher in protonema stage and anandamide showed higher growth inhibitory effects, chlorophyll reduction, and putative gene induction than NAE 12:0, compared to ABA, when applied exogenously.
|
5 |
Endocannabinoid-Like Lipids in PlantsChilufya, Jedaidah Y., Devaiah, Shivakumar P., Sante, Richard R., Kilaru, Aruna 15 October 2015 (has links)
Classically, endogenous fatty acid ethanolamides and their derivatives that bind to the cannabinoid receptors and trigger a signalling pathway are referred to as endocannabinoids. Although derivatives of arachidonic acid, including arachidonylethanolamine or anandamide, are the known endogenous ligands for cannabinoid receptors, other fatty acid ethanolamides or N-acylethanolamines (NAE) that vary in carbon chain length and saturation occur ubiquitously in eukaryotic organisms and play an important role in their physiology and development. The metabolic pathway for NAEs is highly conserved among eukaryotes and well characterised in mammalian systems. Although NAE pathway is only partly elucidated in plants, significant progress has been made in the past 20 years in understanding the implications of the metabolism of saturated and unsaturated endocannabinoid-like molecules in plant development and growth. The latest advancements in the field of plant endocannabinoid research are reviewed. Key Concepts Endocannabinoids are endogenous ligands of cannabinoid receptors in mammalian systems. Endocannabinoids belong to a class of small bioactive lipid molecules that are derivatives of fatty acids including their ethanolamides, referred to as N-acylethanolamines. N-Acylethanolamines are ubiquitous and their metabolic pathway is highly conserved among eukaryotes. In higher plants, only 12–18C N-acylethanolamines have been identified and their metabolic pathway is partly elucidated. The endocannabinoid-like lipids play an important role in seed germination, seedling development, flowering and cellular organisation. In plants, N-acylethanolamines also participate in mediating responses to biotic and abiotic stress.
|
Page generated in 0.0793 seconds