• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 13
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 51
  • 51
  • 51
  • 12
  • 12
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Evolutionary history and diversification of duplicated fatty-acyl elongase genes of Atlantic salmon (Salmo salar)

Carmona-Antoñanzas, Greta E. January 2014 (has links)
Background: The Atlantic salmon, Salmo salar L., is a prominent member of the Salmonidae family, and has been the focus of intense research because of its environmental and economic significance as an iconic sporting species and its global importance as an aquaculture species. Furthermore, salmonids constitute ideal organisms for the study of evolution by gene duplication as they are pseudotetraploid descendants of a common ancestor whose genome was duplicated some 25 to 100 million years ago. Whole-genome duplication is considered a major evolutionary force capable of creating vast amounts of new genetic material for evolution to act upon, promoting speciation by acquisition of new traits. Recently, large-scale comparison of paralogous genes in Atlantic salmon suggested that asymmetrical selection was acting on a significant proportion of them. However, to elucidate the physiological consequences of gene and genome duplications, studies integrating molecular evolution and functional biology are crucial. To this end, sequence and molecular analyses were performed on duplicated Elovl5 fatty-acyl elongases of Atlantic salmon, as they are responsible for a rate-limiting reaction in the elongation process of long-chain polyunsaturated fatty acids (LC-PUFA), critical components of all vertebrates. The aim of the research presented here was to investigate the role of gene duplication as an evolutionary process capable of creating genetic novelty, and to identify the potential ecological and physiological implications. Results: Linkage analyses indicated that both fatty-acyl elongases segregated independently and located elovl5 duplicates on different linkage groups. Genetic mapping using microsatellites identified in each elovl5 locus assigned elovl5a and elovl5b to chromosomes ssa28 and ssa13, respectively. In silico sequence analysis and selection tests indicated that both salmon Elovl5 proteins were subject to purifying selection, in agreement with previous results showing indistinguishable substrate specificities. Gene expression and promoter analysis indicated that Elovl5 duplicates differed in response to dietary lipids and tissue expression profile. Lipid biosynthesis and metabolic gene expression profiling performed in Atlantic salmon SHK-1 cells, suggested that the control of lipid homeostasis in fish is similar to that described in higher vertebrates, and revealed the particular importance of Lxr and Srebp transcription factors (TFs) in the regulation of LC-PUFA biosynthetic enzymes. Sequence comparison of upstream promoter regions of elovl5 genes showed intense differences between duplicates. Promoter functional analysis by co-transfection and transcription factor transactivation showed that both elovl5 duplicates were upregulated by Srebp overexpression. However, elovl5b exhibited a higher response and its promoter contained a duplication of a region containing response elements for Srebp and NF-Y cofactors. Furthermore, these studies indicated an Lxr/Rxr dependant response of elovl5a, which was not observed in elovl5b. Analysis of the genomic sequences of elovl5 duplicates by comparison to various sequence databases showed an asymmetrical distribution of transposable elements (TEs) in both introns and promoter regions. Further comparison to introns of the single elovl5 gene in pike indicated much higher TE distribution in salmon genes compared to the pike. Conclusions: Although not conclusive, the most parsimonious origin for the salmon elovl5 duplicates is that they are derived from a WGD event. This conclusion is also supported by the close similarity of two elovl5 paralogs in the recently available rainbow trout genome. Regardless of their origin, Atlantic salmon elovl5 genes have been efficiently retained in the genome under strong functional constraints indicating a physiological requirement for both enzymes to be functionally active. In contrast, upstream promoter regions have strongly diverged from one another, indicating a relaxation of purifying selection following the duplication event. This divergence of cis-regulatory regions has resulted in regulatory diversification of the elovl5 duplicates and regulatory neofunctionalisation of elovl5a, which displayed a novel Lxr/Rxr-dependant response not described in sister or other vertebrate lineages. Promoter analysis indicated that the observed elovl5 differential response to dietary variation could be partly attributed to varying transcriptional regulation driven by lipid-modulated TFs. The distribution of TEs in elvol5 genes of Atlantic salmon shows a clear increase in TE mobilisation after the divergence of esocids and salmonids. This must have occurred after the elongase duplication and thus the salmonid WGD event and contributes to the observed regulatory divergence of elovl5 paralogs.
42

Efeito em hamsters da suplementação dietética com gorduras ricas em ácidos graxos saturados, monoinsaturados ou poliinsaturados sobre a transferência de lípides para a lipoproteína de alta densidade (HDL) / Effect of dietary supplementation with saturated, monounsaturated or polyunsaturated fatty acid-rich oils on the lipids transfer of high-density lipoprotein (HDL) in hamsters

Maniero, Fernanda 21 July 2009 (has links)
A composição lipídica das lipoproteínas reflete o conteúdo de ácido graxo (AG) da dieta. A influência dos AG na lipemia e aterogênese varia conforme o grau de saturação, de oxidação e suas proporções na dieta. Vários estudos reportam os efeitos dos ácidos graxos saturados (AGS), monoinsaturados (AGM) e poliinsaturados (AGP) sobre a concentração das lipoproteínas plasmáticas. No entanto, são pouco explorados os efeitos dessa suplementação sobre as propriedades funcionais da lipoproteína de alta densidade (HDL). Desse modo, no presente estudo foi avaliada a transferência de fosfolípides (FL), colesterol livre (CL), ésteres de colesterol (EC) e triglicérides (TG) de uma nanoemulsão lipídica artificial para a HDL, bem como sua atividade antioxidante e a sua composição em ácidos graxos. Além disso, foram avaliadas as atividades das proteínas de transferência de ésteres de colesterol (CETP) e de fosfolípides (PLTP). Foram estudados 84 hamsters Golden Syrian, machos adultos, divididos em 3 grupos os quais receberam suplementação dietética de óleos ricos em AGS (n=28), AGM (n=29) ou AGP (n=27), por gavagem, durante 30 dias. Amostras de sangue foram coletadas, após jejum de 12 h, para determinação do perfil lipídico, atividade da CETP, da PLTP, da paroxonase 1 (PON1) e a composição em ácidos graxos do plasma total e da fração HDL por cromatografia gasosa, bem como a transferência de lípides da nanoemulsão lipídica artificial para a HDL. O método de transferência é baseado na troca de lípides ocorrida entre uma nanoemulsão lipídica artificial, semelhante à estrutura lipídica da LDL, marcada radioativamente com 14C-CL e 3H-TG ou 14C-FL e 3H-EC, usada como doadora de lípides. Após precipitação química da nanoemulsão e das demais lipoproteínas, a capacidade da HDL de receber lípides foi quantificada pela medida da radioatividade presente na lipoproteína. As concentrações de colesterol total, EC, TG e ácido graxo oléico foram menores no grupo AGP em relação aos grupos AGS e AGM (p=0,002, p=0,010, p=0,001, p<0,05, respectivamente). A atividade da PON1, a atividade da PLTP assim como a composição em ácidos graxos da HDL, não diferiu entre os grupos estudados. Por outro lado, a atividade da CETP foi maior no grupo AGM quando comparado aos grupos AGS e AGP (p<0,05). O grupo AGP apresentou maior transferência de EC e menor transferência de FL em comparação aos grupos AGS e AGM (p<0,05). A suplementação dietética de ácidos graxos é capaz de influenciar a funcionalidade da partícula HDL. Dessa forma, o presente estudo fornece subsídios para melhor compreensão do efeito da dieta nos mecanismos relacionados ao metabolismo lipídico nos hamsters / The lipid composition of the lipoproteins reflects the fatty acid (FA) content of the diet . The degree of saturation and oxidation as the dietary content of the FA differently affects the lipemia and the atherosclerosis development. Numerous studies have evaluated the effects of the saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) on the plasma lipoprotein concentrations. However, few studies explored the effects of the dietary supplementation of these FA on the functional properties of the high-density lipoprotein (HDL). Therefore, in this study, the transfer of phospholipids (PL), free cholesterol (FC), cholesteryl esters (CE) and triglycerides (TG) from an artificial lipidic nanoemulsion to HDL, as its antioxidant activity and total fatty acids composition were evaluated. Also, the cholesteryl ester transfer protein (CETP) and the phospholipid transfer protein (PLTP) activities were determined. We studied 84 adult male Golden Syrian hamsters divided into 3 groups that received dietary supplementation of 0.75 ml of SFA (n=28), MUFA (n=29) or PUFA (n=27) rich oils by gavage for thirty days. Blood samples were collected after 12 h fasting for determination of plasma lipids, CEPT, PLTP and paraoxonase-1 (PON-1) activities, the fatty acids composition of the total plasma and HDL fraction by gas-liquid chromatography and transfer of lipids from the artificial lipidic nanoemulsion to HDL. The later method is based on the lipid transfer between an artificial lipidic nanoemulsion labeled with 3H-TG and 14C-FC or 3H-CE and 14C-PL, structurally similar to the low-density lipoprotein (LDL), used as a radioactive lipid donator. After artificial nanoemulsion and other lipoprotein precipitation, the capacity of HDL to receive lipids was quantified by measuring the radioactivity present in the lipoprotein. Serum total cholesterol, CE, TG and oleic fatty acids concentrations were smaller in the PUFA group than in the SFA and MUFA groups (p=0.002, p=0.010, p=0.001 and p<0,05 respectively). The PON-1, the PLTP activities and fatty acids composition of the HDL fraction were similar between the groups. On the other hand, the CETP activity was greater in the MUFA group than in the SFA and PUFA groups (p<0.05). The PUFA group showed greater transfer of CE and smaller transfer of PL from the nanoemulsion to HDL compared with SFA and MUFA groups (p<0.05). The dietary supplementation of different FA can lead to alterations of the functionality of the HDL particles. Therefore, the present study contributes to a better understanding of the effects of different fatty acid -rich diets on the mechanisms involved in the lipid metabolism in hamsters
43

Efeito em hamsters da suplementação dietética com gorduras ricas em ácidos graxos saturados, monoinsaturados ou poliinsaturados sobre a transferência de lípides para a lipoproteína de alta densidade (HDL) / Effect of dietary supplementation with saturated, monounsaturated or polyunsaturated fatty acid-rich oils on the lipids transfer of high-density lipoprotein (HDL) in hamsters

Fernanda Maniero 21 July 2009 (has links)
A composição lipídica das lipoproteínas reflete o conteúdo de ácido graxo (AG) da dieta. A influência dos AG na lipemia e aterogênese varia conforme o grau de saturação, de oxidação e suas proporções na dieta. Vários estudos reportam os efeitos dos ácidos graxos saturados (AGS), monoinsaturados (AGM) e poliinsaturados (AGP) sobre a concentração das lipoproteínas plasmáticas. No entanto, são pouco explorados os efeitos dessa suplementação sobre as propriedades funcionais da lipoproteína de alta densidade (HDL). Desse modo, no presente estudo foi avaliada a transferência de fosfolípides (FL), colesterol livre (CL), ésteres de colesterol (EC) e triglicérides (TG) de uma nanoemulsão lipídica artificial para a HDL, bem como sua atividade antioxidante e a sua composição em ácidos graxos. Além disso, foram avaliadas as atividades das proteínas de transferência de ésteres de colesterol (CETP) e de fosfolípides (PLTP). Foram estudados 84 hamsters Golden Syrian, machos adultos, divididos em 3 grupos os quais receberam suplementação dietética de óleos ricos em AGS (n=28), AGM (n=29) ou AGP (n=27), por gavagem, durante 30 dias. Amostras de sangue foram coletadas, após jejum de 12 h, para determinação do perfil lipídico, atividade da CETP, da PLTP, da paroxonase 1 (PON1) e a composição em ácidos graxos do plasma total e da fração HDL por cromatografia gasosa, bem como a transferência de lípides da nanoemulsão lipídica artificial para a HDL. O método de transferência é baseado na troca de lípides ocorrida entre uma nanoemulsão lipídica artificial, semelhante à estrutura lipídica da LDL, marcada radioativamente com 14C-CL e 3H-TG ou 14C-FL e 3H-EC, usada como doadora de lípides. Após precipitação química da nanoemulsão e das demais lipoproteínas, a capacidade da HDL de receber lípides foi quantificada pela medida da radioatividade presente na lipoproteína. As concentrações de colesterol total, EC, TG e ácido graxo oléico foram menores no grupo AGP em relação aos grupos AGS e AGM (p=0,002, p=0,010, p=0,001, p<0,05, respectivamente). A atividade da PON1, a atividade da PLTP assim como a composição em ácidos graxos da HDL, não diferiu entre os grupos estudados. Por outro lado, a atividade da CETP foi maior no grupo AGM quando comparado aos grupos AGS e AGP (p<0,05). O grupo AGP apresentou maior transferência de EC e menor transferência de FL em comparação aos grupos AGS e AGM (p<0,05). A suplementação dietética de ácidos graxos é capaz de influenciar a funcionalidade da partícula HDL. Dessa forma, o presente estudo fornece subsídios para melhor compreensão do efeito da dieta nos mecanismos relacionados ao metabolismo lipídico nos hamsters / The lipid composition of the lipoproteins reflects the fatty acid (FA) content of the diet . The degree of saturation and oxidation as the dietary content of the FA differently affects the lipemia and the atherosclerosis development. Numerous studies have evaluated the effects of the saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) on the plasma lipoprotein concentrations. However, few studies explored the effects of the dietary supplementation of these FA on the functional properties of the high-density lipoprotein (HDL). Therefore, in this study, the transfer of phospholipids (PL), free cholesterol (FC), cholesteryl esters (CE) and triglycerides (TG) from an artificial lipidic nanoemulsion to HDL, as its antioxidant activity and total fatty acids composition were evaluated. Also, the cholesteryl ester transfer protein (CETP) and the phospholipid transfer protein (PLTP) activities were determined. We studied 84 adult male Golden Syrian hamsters divided into 3 groups that received dietary supplementation of 0.75 ml of SFA (n=28), MUFA (n=29) or PUFA (n=27) rich oils by gavage for thirty days. Blood samples were collected after 12 h fasting for determination of plasma lipids, CEPT, PLTP and paraoxonase-1 (PON-1) activities, the fatty acids composition of the total plasma and HDL fraction by gas-liquid chromatography and transfer of lipids from the artificial lipidic nanoemulsion to HDL. The later method is based on the lipid transfer between an artificial lipidic nanoemulsion labeled with 3H-TG and 14C-FC or 3H-CE and 14C-PL, structurally similar to the low-density lipoprotein (LDL), used as a radioactive lipid donator. After artificial nanoemulsion and other lipoprotein precipitation, the capacity of HDL to receive lipids was quantified by measuring the radioactivity present in the lipoprotein. Serum total cholesterol, CE, TG and oleic fatty acids concentrations were smaller in the PUFA group than in the SFA and MUFA groups (p=0.002, p=0.010, p=0.001 and p<0,05 respectively). The PON-1, the PLTP activities and fatty acids composition of the HDL fraction were similar between the groups. On the other hand, the CETP activity was greater in the MUFA group than in the SFA and PUFA groups (p<0.05). The PUFA group showed greater transfer of CE and smaller transfer of PL from the nanoemulsion to HDL compared with SFA and MUFA groups (p<0.05). The dietary supplementation of different FA can lead to alterations of the functionality of the HDL particles. Therefore, the present study contributes to a better understanding of the effects of different fatty acid -rich diets on the mechanisms involved in the lipid metabolism in hamsters
44

Increased flux through the hexosamine biosynthetic pathway leads to the induction of acetol-CoA caboxylase gene expression in the heart

Imbriolo, Jamie 03 1900 (has links)
Thesis (MSc)--Stellenbosch University, 2008. / ENGLISH ABSTRACT: Gene expression of the cardiac isoform of acetyl-CoA carboxylase (ACCb) is induced in a glucose-dependent manner. ACCb produces malonyl-CoA, a potent inhibitor of mitochondrial fatty acid uptake. Previous studies show that increased flux through the hexosamine biosynthetic pathway (HBP) under hyperglycaemic conditions may contribute to the development of insulin resistance. In light of this, we hypothesised that increased HBP flux induces cardiac ACCb gene expression thereby contributing to the onset of insulin resistance. We tested our hypothesis by transiently transfecting cardiac-derived rat H9c2 myoblasts with a 1,317 bp human ACCb promoter-luciferase construct (pPIIb-1317) and an expression construct encoding the rate-limiting step of the HBP i.e. glutamine: fructose 6-phosphate amidotransferase (GFAT). Overexpression of GFAT increased ACCb gene promoter activity by 75 ± 23% versus controls (n=6, p<0.001). When cotransfection experiments were repeated in the presence of varying concentrations of L-glutamine (0 mM, 4 mM, 8 mM), a substrate for the HBP, ACCb promoter activity was dose-dependently increased. To further corroborate these findings, we employed two inhibitors of GFAT, i.e. 40 μM azaserine and 40 μM 6-diazo-5-oxo-Lnorleucine were administered to transfected cells for a period of 24 hours. Here both azaserine and 6-diazo-5-oxonorleucine attenuated ACCb gene promoter activity. In agreement, co-transfections with two dominant negative GFAT constructs also diminished ACCb gene promoter activity. We next inhibited two enzymes of the HBP acting downstream of GFAT, i.e. O-GlcNAc transferase and O-GlcNAcase using alloxan (0.1 mM, 1 mM and 2 mM) and streptozotocin (5 mM and 10 mM), respectively, for a period of 24 hours. Addition of alloxan attenuated ACCb gene promoter activity by 35.6 ± 1.9% (n=16, p<0.001) and streptozotocin increased activity by 32 ± 12% (n=12, p<0.001). We also investigated USF1 and USF2 as transcriptional regulatory candidates for HBP-induced ACCβ promoter regulation. Our data implicates USF2 as an important transcriptional regulator of HBP-induced ACCβ promoter regulation. In summary, this study demonstrates that increased flux through the hexosamine biosynthetic pathway induces ACCb gene promoter activity. We further propose that such an induction would reduce cardiac fatty acid oxidation, thereby leading to intracellular lipid accumulation due to a mismatch between sarcolemmal FA uptake and mitochondrial FA oxidation in the insulin resistant setting (i.e. hyperlipidaemia). / AFRIKAANSE OPSOMMING: Geen uitdrukking van die kardiale isoform asetiel-KoA karboksilase (ACCb) word in ‘n glukose afhanklike wyse geïnduseer. ACCb produseer maloniel-KoA, ‘n kragtige inhibeerder van mitochondriale vetsuuropname. Vorige studies toon aan dat verhoogde fluks deur die heksosamien biosintestiese weg (HBW) onder hiperglukemiese toestande bydra tot die ontwikkeling van insulienweerstand. In die lig hiervan, word daar gehipotetiseer dat verhoogde HBP fluks kardiale ACCb geenuitdrukking induseer en so bydra tot die ontstaan van insulienweerstand. Ons hipotese is getoets deur die kardiale afkomstige rot H9c2 mioblaste met ‘n 1.317 bp mens ACCb-lusiferase promotor konstruk (pPII-1317) te transfekteer en ‘n uitdrukking te konstrueer wat die tempo bepalende stap van HBP i.e. glutamien: fruktose-6-fosfaat amidotransferase (GFAT) kodeer. Ooruitdrukking van GFAT verhoog ACCb geenpromotor aktiviteit deur 75 ± 23% teenoor kontrole (n=6, p<0.001). Die herhaling van ko-transfeksie eksperimente is herhaal in die teenwoordigheid van variëerbare L-glutamienkonsentrasies (0 mM, 4 mM, 8 mM), ’n substraat vir die HBP, ACCb promotor aktiwiteit is dosisafhanglik verhoog. Om die bevindinge verder te staaf, is twee inhibeerders van GFAT, i.e. 40 μM azaserien en 40 μM 6-diazo-5-oxo-L-norleusien aan transfeksie selle toegedien vir ’n tydperk van 24 uur. Beide azaserien en 6-diazo-5-oxo-L-norleusien verlaag ACCb geenpromotor aktiwiteit. In ooreenstemming met die bogenoemde het ko-transfeksies met twee dominante negatiewe GFAT konstrukte ook ACCb geenpromoter aktiwiteit verminder. Die volgende stap is om twee ensieme van die HBP wat stroomaf van GFAT aktief is, vir ‘n periode van 24 uur te inhibeer i.e. O-GlcNAc transferase en O-GlcNAcase deur alloxan (0.1 mM, 1 mM en 2 mM) and streptozotosien (5 mM en 10 mM) onderskeidelik vir ‘n 24 uur periode te gebruik. Toevoeging van alloxan het die ACCb geenpromotor aktiwiteit by 35.6 ± 1.9% (n=16, p<0.001) verlaag en streptozotosien aktiwiteit verhoog by 32 ± 12% (n=12, p<0.001). Ons het ook die USF1 en USF2 as transkripsie regulerings kandidate vir HBP-geïnduseerde ACCβ promotor regulering ondersoek. Ons data impliseer dat USF2 as ‘n belangrike transkripsie reguleerder van HBP-geïndiseerde ACCβ promotor regulering is. Samevattend het hierdie studie demonstreer dat verhoogde fluks deur die hexosamien biosintetiese weg ACCb geenpromotor aktiwiteit induseer. Ons stel verder voor dat hierdie induksie die kardiale vetsuuroksidasie verlaag wat daartoe lei dat intrasellulêre lipied akkumulasie as gevolg van onparing tussen sarkolemma vetsuuropname en mitochondriale vetsuuroksidasie in ’n insulien weerstandige situasie (i.e. hiperlipidaemia).
45

On the dynamics and selective transport of fatty acids and organochlorines in lactating grey seals (Halichoerus grypus)

Arriola Ortiz, Aline January 2010 (has links)
This thesis examines fatty acid (FA) and polychlorinated biphenyl (PCB) dynamics in a marine top predator, the grey seal (Halichoerus grypus,) and their transfer during lactation from mother to offspring. It examines regional and annual variations in FA composition and PCB loads, and also how the physical and chemical characteristics of these molecules (e.g. their polarity and size) can affect the rates of accumulation, mobilization and transfer of specific FAs or PCBs. Two UK grey seal colonies (North Rona (NR) and Isle of May (IOM) were studied during three consecutive years (1996-1998 and 2004-2006). Lactating grey seals and their pups were repeatedly captured during the lactation period and sampled for blubber, serum and milk and analysed for FAs and PCBs. Overall, the two colonies were clearly distinguished from each other, suggesting that the main prey species had different FA composition, and possibly that the seals from these colonies had different diets . These differences are probably a direct consequence of differences in prey community structure in the two regions where seals from these two colonies are thought to feed. Within each colony, annual differences could be detected between some years but not between others. During 1996-98, IOM seals showed a clear change in their FA profiles while NR seals did not. In contrast, during 2004-2006 NR seals showed a clear change while IOM seals did not. The changes observed in IOM during 1996-1998 are consistent with the large-scale regime shift that occurred in the North Sea during the 1990‟s. The relative proportions of each FA that were mobilized from blubber and transferred to the milk during lactation were very similar between colonies, and could be explained to a large degree by their physico-chemical properties. For a given carbon chain length the mobilization increased with increasing number of double bonds; and for a given number of double bonds the mobilization decrease with increasing carbon chain length. However, the mobilization also appeared to be influenced by the specific nutritional requirements of the growing pups. For instance, FAs that are considered essential for pup development or efficient energy storage (e.g. saturated FAs) were more highly mobilised than expected. This selectivity was also reflected in the FA composition of the different body compartments (maternal blubber and milk, pup blubber) that persisted throughout lactation. These changes were also similar between the colonies. Colonies could also be clearly distinguished by their blubber PCB profiles. IOM seals had higher total concentrations on average than NR seals (1327.9 vs. 680.2 ng/g lipid in 2005 and 1199.7 vs. 819.0 ng/g lipid in 2006). IOM seals also had higher total amounts in both years (79.2 vs. 38.0 mg in 2005 and 61.7 vs. 53.4 mg in 2006). One of the main differences between colonies was that females from IOM had higher concentrations of highly chlorinated congeners than NR seals. PCB concentrations in blubber increased towards the end of lactation. Serum and milk PCB concentrations also increased rapidly, especially for the highly chlorinated congeners. These results were consistent with other studies showing the increase in concentrations as a result of lipid loss. Serum concentrations stayed constant during the first part of lactation and increased at late lactation. This was also observed in milk PCB concentrations. The changes in the PCB profiles in the three body compartments were very similar between colonies. However IOM seals always had higher total concentrations of PCBs in all of the body compartments. The concentrations of individual congeners relative to PCB-153 showed that blubber contained higher proportions of the highly chlorinated PCBs relative to other tissues. There were no clear changes in these proportions in blubber during lactation, but the relative proportions of highly chlorinated PCB In serum and milk increased throughout lactation while the less chlorinated PCBs stayed constant. The highly chlorinated PCBs were found in lower concentration in the milk compared to the less chlorinated compounds suggesting a selective release from blubber to blood and a selective transfer of PCBs to the milk.
46

Maternal diet and essential fatty acid metabolism in progeny chickens

Bullock, Cheri Jean 07 February 2013 (has links)
During the 21 day incubation period, the fertile egg provides nutrients such as fatty acids for energy and polyunsaturated fatty acids (PUFA) for membrane synthesis to the developing chick. The hypothesis tested in the present study is that the type of PUFA fed to the breeder hen can alter tissue lipid composition and PUFA metabolism in the progeny during growth. The objective of the present study was to test two different sources of PUFA (n-3 or n-6) on: 1) egg production, egg, and chick quality; and 2) changes in tissue PUFA composition and metabolism in progeny during growth. Fertilized eggs (n=240) were collected from Ross breeder hens (n=45) fed one of the three experimental diets containing 3.5% fish (long chain n-3), flax (18:3 n-3), or safflower oil (18:2 n-6). The egg and yolk weight was lowest for eggs from hens fed fish oil (P=0.09, P=0.02). The chick weight on day of hatch was 41.2, 45.3, and 43.3g, for fish, flax, and safflower, respectively (P=0.003). In the second experiment fertilized eggs were collected from Lohman Brown layer hens (n=75) fed a control, high n-3, or low n-3 diet. Chicks were raised up to day 14 on a control diet lacking long-chain n-6 and n-3 fatty acids. Chick tissue samples (gastrointestinal tract, liver, and blood) were collected on day 1, 7, and 14 and were subjected to fatty acid (FA) and interleukin-6 (IL-6) analysis. The long-chain n-6 to long chain n-3 ratio was lowest in the duodenum, jejunum, ileum, and liver from chicks hatched from fish oil fed hens (P<0.001) up to day 14. Interleukin-6 was lowest in liver (P=0.009) and serum on day of hatch, for fish oil chicks. The results from this study show that the diet fed to breeder hens alters progeny tissue PUFA composition and lipid metabolism during early development in avians. The long term effects of maternal diet manipulation on progeny growth and lipid metabolism need to be investigated in detail. / Graduation date: 2013
47

Bioactive fatty acids as dietary supplements for farmed fish : effects on growth performance, lipid metabolism, gene expression and immune parameters

Kennedy, Sean Robert January 2007 (has links)
Current feed formulations within the aquaculture industry have tended to rely on high dietary lipid thus offsetting relatively expensive protein as a source of energy. In this way, protein can be ‘spared’ for synthesis of new tissue and the high lipid content can also fulfil both fish and consumer essential fatty acid (EFA) requirements. However, the main disadvantage of feeding high lipid levels to farmed fish is a surplus of fat deposition in the flesh and other important tissues, which can detrimentally impact on quality characteristics central to the human consumer. However, based on previous work in other animal models, it is entirely feasible that supplementation of the diet with bioactive fatty acids such as conjugated linoleic acid (CLA) and tetradecylthioacetic acid (TTA) may mitigate the deleterious effects of feeding farmed fish high fat diets by reducing fat deposition in particular. The general objective of this research work was to test the hypothesis that CLA and/or TTA could augment growth, reduce fat deposition and enhance fatty acid composition via incorporation of these bioactive fatty acids, and increase n-3 highly unsaturated fatty acid (HUFA) levels in the flesh of commercially important fish species such as Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua L.) and rainbow trout (Oncorhynchus mykiss). This project also considered the influence of CLA and TTA on enzymes and transcription factors thought to be pivotal in lipid metabolism and fatty acid oxidation in particular. A subsidiary aim of this research work was to investigate the immunological impact of dietary CLA and TTA administration in these fish. The results of this project have revealed that the hypothesis was only partly proved. There was no effect in growth or biometry after either CLA or TTA supplementation in any of the fish species investigated. Additionally, there were few physiologically significant effects on fat levels on fish as a result of TTA or CLA administration. However, there were a number of effects on fatty acid metabolism including inhibition of steroyl coenzyme desaturase (SCD) in cod and trout in particular and also enhancement of hepatic n-3 HUFA levels in trout. Importantly, it was determined that both TTA and CLA could be incorporated into the flesh thus providing a vehicle through which these bioactive fatty acids can be delivered to the consumer. There were also a number of beneficial effects on activity and gene expression of a number of enzymes and transcription factors thought to be fundamental to the modulation of fatty acid oxidation in particular. However, the effects on gene transcription and biochemistry had little impact at the whole body level. This research work also showed that there were no detrimental effects on immune status after supplementation with dietary CLA or TTA. Conclusively, this thesis has contributed to the overall understanding of the influence of dietary CLA and TTA in farmed fish.
48

The effects of dietary polyunsaturated fatty acids on prostate cancer-proteomic and phosphoproteomic studies

Zhao, Heng 15 January 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / This dissertation studies the effects of fatty acids on prostate cancer. Prostate cancer is one of the most common malignant diseases in males in the U.S. Because of the slow progression of this disease, early intervention methods, especially, dietary fatty acid interventions are considered very important to control the disease in early stages. This study describes how the depletion of the enzyme for endogenous fatty acid synthesis, fatty acid synthase, influences the expression of enzymes that metabolize dietary fatty acids and show how dietary fatty acids affect prostate cancer protein expression and function. Fatty acid synthase is an oncoprotein overexpressed in prostate cancer and its expression is suppressed with omega-3 fatty acid treatment. This study finds that the depletion of fatty acid synthase by siRNA knockdown induces suppression of cyclooxygenase-2 and fatty acid desaturase-1. Our results also show that fish oil (omega-3 fatty acid), but not oleic acid (omega-9 fatty acid), suppresses prostate cancer cell viability. Assessment of fatty acid synthesis activity indicates that oleic acid is a more potent inhibitor than fish oil of de novo fatty acid biosynthesis. In addition, the inhibition of its activity occurs over several days while its effects on cell viability occur within 24 hours. To better understand this relationship, label free LC-MS/MS based mass spectrometry was carried out to determine global proteomic and phosphoproteomic profiles of the prostate cell line PC3, with longitudinal treatment with fish oil or oleic acid. With short-term fish oil treatment, sequestosome-1was elevated. Prolonged treatment induced downregulation of microseminoprotein, a proinflammation factor, as well as proteins in the glycolysis pathway. In the phosphoproteomics study, we confidently identified 828 phosphopeptides from 361 phosphoproteins. Quantitative comparison between fish oil or oleic acid treated groups and the untreated group suggests that the fish oil induces changes in phosphorylation of proteins involved in the pathways associated with cell viability and metabolic processes, with fish oil inducing significant decreases in the levels of phospho-PDHA1Ser232 and phospho-PDHA1Ser300 and they were accompanied by an increase in PDH activity, suggesting a role for n-3 polyunsaturated fatty acids in controlling the balance between lipid and glucose oxidation.
49

Circulating and Adipose Tissue Fatty Acid Composition in Black South African Women with Obesity: A Cross-Sectional Study

Nono Nankam, Pamela A., van Jaarsveld, Paul J., Chorell, Elin, Fortuin-de Smidt, Melony C., Adams, Kevin, Blüher, Matthias, Olsson, Tommy, Mendham, Amy E., Goedecke, Julia H. 20 April 2023 (has links)
Background and Aims: During positive energy balance, excess lipid storage in subcutaneous adipose tissue (SAT) is associated with increased lipolysis. Elevated circulating fatty acid (FA) concentrations from both SAT lipolysis and dietary fat intake may result in visceral adipose tissue (VAT) accumulation, impairment of glucose metabolism, altogether increasing obesity-associated metabolic risks. We aimed to test the hypothesis that FA composition of red blood cell total phospholipids (RBC-TPL) and SAT is associated with body fat centralisation (VAT/SAT ratio) and insulin sensitivity (SI) in black South African women with obesity. Methods: Participants’ (n = 41) body fat composition and distribution, SI, and RBC-TPL, abdominal and gluteal SAT (gSAT) FA composition (gas-liquid chromatography) were measured. Results: RBC-TPL contained higher proportions of saturated fatty acids (SFAs) than SAT (p < 0.001), which were associated with lower SI (p < 0.05). Mono-unsaturated fatty acids (MUFAs) and stearoyl-CoA desaturase-1 (SCD1)-16 were lower, while poly-unsaturated fatty acids (PUFAs), and delta-5 and delta-6 desaturase indices were higher in RBC-TPL than SAT (p < 0.001). Interestingly, FA profiles differed between SAT depots with higher SFAs and lower MUFAs, SCD1-16 and SCD1-18 indices in abdominal compared to gluteal SAT (p < 0.01). In both SAT depots, higher SFAs and lower PUFAs (n-3 and n-6) correlated with lower VAT/SAT ratio; and lower PUFAs (n-3 and n-6) and higher total MUFA correlated with higher SI. Conclusion: Our findings confirm the relationships between the FA composition of RBC-TPL and SAT and metabolic risk in black women with obesity, which are dependent on both the FA class, and the tissue type/blood compartment in which they are distributed.
50

Investigations of lipid metabolism in Yarrowia lipolytica

Blocher-Smith, Ethan Charles 31 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / An investigation of the lipid metabolism pathway in the yeast Yarrowia lipolytica was conducted. Yarrowia is an oleaginous ascomycete that is capable of growing on many different substrates, which derives its name from its high efficiency of growth on lipids. Once the exogenous lipids are converted into free fatty acids and internalized by the yeast, the primary mode of degradation is through β-oxidation mediated by the peroxisomal oxidases, or POX genes. These enzymes catalyze the formation of a trans double bond, producing the trans-2-enoyl product. Our study looked at the comparison of the Y. lipolytica prototrophic strain against a knockout of the Pox2 gene on the uptake, incorporation, and degradation of relevant fatty acids. To construct this gene knockout, a novel gene deletion method using a combination of Cre recombinase and the AHAS* gene was synthesized, developed, and tested successfully. This knockout system allows for serial deletion of genes with the use of only one resistance marker, with excision of the marker after selection.

Page generated in 0.0698 seconds