• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrôle tolérant aux fautes en ligne d'une pile à combustible de type PEM. Contribution à la gestion de l'eau / No English title available

Lebreton, Carole 04 December 2015 (has links)
Le développement des Piles à Combustible (PàC) est en plein essor dans le contexte de transition énergétique mondial. La production d'énergie électrique par les PàCs possède l'atout majeur de ne rejeter que de l'eau et de la chaleur, sans émission de gaz à effet de serre. Pour un développement et une commercialisation plus large des PàCs comme générateurs d'énergie, leur fiabilité et leur durée de vie. Cette thèse est dédiée au Contrôle Tolérant aux Fautes appliquée à la gestion de l'eau dans les Piles à Combustibles de type PEM. Une gestion appropriée de l'état d'hydratation de la PEMFC contribue à éviter les dégradations irréversibles de ses composants et ses performances, et par conséquent à un allongement de sa durée de vie et une augmentation de sa fiabilité. La stratégie de Contrôle Tolérant aux Fautes Actif proposée est constituée d'une méthode de diagnostic basée modèle pour la détection et l'isolation des fautes et d'un contrôleur PID auto-adaptatif régulant la surstoechiométrie en oxygène. Il est à noter que cette stratégie a été validée en ligne sur un système PàC réel. / Fuel Cell (FC) development is expending due to global energy transition. Power generation using FC results in water and heat as by-products, without emission of greenhouse gases. To continue developing and expanding its use as power generators, FC lifetime and reliability have to be enhanced. This thesis work is dedicated to Fault Tolerant Control System (FTCS) applied to water management in PEM Fuel Cells. An appropriate water management of FC allow to avoid irreversible degradations of FC components and performance that lead to an improvement of FC reliability and lifetime.The proposed FTCS is composed of a model-based diagnosis method applied to fault detection and isolation, and a self-tuning PID strategy for oxygen excess ratio control. This strategy is tested and validated on-line on a real FC system.
2

Low cost integration of Electric Power-Assisted Steering (EPAS) with Enhanced Stability Program (ESP)

Soltani, Amirmasoud January 2014 (has links)
Vehicle Dynamics Control (VDC) systems (also known as Active Chassis systems) are mechatronic systems developed for improving vehicle comfort, handling and/or stability. Traditionally, most of these systems have been individually developed and manufactured by various suppliers and utilised by automotive manufacturers. These decentralised control systems usually improve one aspect of vehicle performance and in some cases even worsen some other features of the vehicle. Although the benefit of the stand-alone VDC systems has been proven, however, by increasing the number of the active systems in vehicles, the importance of controlling them in a coordinated and integrated manner to reduce the system complexity, eliminate the possible conflicts as well as expand the system operational envelope, has become predominant. The subject of Integrated Vehicle Dynamics Control (IVDC) for improving the overall vehicle performance in the existence of several VDC active systems has recently become the topic of many research and development activities in both academia and industries Several approaches have been proposed for integration of vehicle control systems, which range from the simple and obvious solution of networking the sensors, actuators and processors signals through different protocols like CAN or FlexRay, to some sort of complicated multi-layered, multi-variable control architectures. In fact, development of an integrated control system is a challenging multidisciplinary task and should be able to reduce the complexity, increase the flexibility and improve the overall performance of the vehicle. The aim of this thesis is to develop a low-cost control scheme for integration of Electric Power-Assisted Steering (EPAS) system with Enhanced Stability Program (ESP) system to improve driver comfort as well as vehicle safety. In this dissertation, a systematic approach toward a modular, flexible and reconfigurable control architecture for integrated vehicle dynamics control systems is proposed which can be implemented in real time environment with low computational cost. The proposed control architecture, so named “Integrated Vehicle Control System (IVCS)”, is customised for integration of EPAS and ESP control systems. IVCS architecture consists of three cascade control loops, including high-level vehicle control, low-level (steering torque and brake slip) control and smart actuator (EPAS and EHB) control systems. The controllers are designed based on Youla parameterisation (closed-loop shaping) method. A fast, adaptive and reconfigurable control allocation scheme is proposed to coordinate the control of EPAS and ESP systems. An integrated ESP & ESP HiL/RCP system including the real EPAS and Electro Hydraulic Brake (EHB) smart actuators integrated with a virtual vehicle model (using CarMaker/HiL®) with driver in the loop capability is designed and utilised as a rapid control development platform to verify and validate the developed control systems in real time environment. Integrated Vehicle Dynamic Control is one of the most promising and challenging research and development topics. A general architecture and control logic of the IVDC system based on a modular and reconfigurable control allocation scheme for redundant systems is presented in this research. The proposed fault tolerant configuration is applicable for not only integrated control of EPAS and ESP system but also for integration of other types of the vehicle active systems which could be the subject of future works.

Page generated in 0.1158 seconds