• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nekontaktní indikátory poruchových stavů na VN vedení / Contactless Fault Indicator for MV Lines

Pernica, Drahomír January 2011 (has links)
The theoretical findings about methods of earth faults indication are elaborated in this thesis into form, which is applicable to design contactless indicator of failure states on MV lines. This design contains electromagnetic field sensors, evaluation device and software support. The higher effectiveness of clearing of fault and better health and asset protection is supposed by using of these indicators.
2

A rough set approach to bushings fault detection

Mpanza, Lindokuhle Justice 06 June 2012 (has links)
M. Ing. / Fault detection tools have gained popularity in recent years due to the increasing need for reliable and predictable equipments. Transformer bushings account for the majority of transformer faults. Hence, to uphold the integrity of the power transmission and dis- tribution system, a tool to detect and identify faults in their developing stage is necessary in transformer bushings. Among the numerous tools for bushings monitoring, dissolved gas analysis (DGA) is the most commonly used. The advances in DGA and data storage capabilities have resulted in large amount of data and ultimately, the data analysis crisis. Consequent to that, computational intelligence methods have advanced to deal with this data analysis problem and help in the decision-making process. Numerous computational intelligence approaches have been proposed for bushing fault detection. Most of these approaches focus on the accuracy of prediction and not much research has been allocated to investigate the interpretability of the decisions derived from these systems. This work proposes a rough set theory (RST) model for bushing fault detection based on DGA data analyzed using the IEEEc57.104 and the IEC 60599 standards. RST is a rule-based technique suitable for analyzing vague, uncertain and imprecise data. RST extracts rules from the data to model the system. These rules are used for prediction and interpreting the decision process. The lesser the number of rules, the easier it is to interpret the model. The performance of the RST is dependent on the discretization technique employed. An equal frequency bin (EFB), Boolean reasoning (BR) and entropy partition (EP) are used to develop an RST model. The model trained using EFB data performs better than the models trained using BR and EP. The accuracy achieved is 96.4%, 96.0% and 91.3% for EFB, BR and EP respectively. This work also pro poses an ant colony optimization (ACO) for discretization. A model created using ACO discretized achieved an accuracy of 96.1%, which is compatible with the three methods above. When considering the overall performance, the ACO is a better discretization tool since it produces an accurate model with the least number of rules. The rough set tool proposed in this work is benchmarked against a multi-layer perceptron (MLP) and radial basis function (RBF) neural networks. Results prove that RST modeling for bushing is equally as capable as the MLP and better than RBF. The RST, MLP and RBF are used in an ensemble of classifiers. The ensemble performs better than the standalone models.
3

Bezpečné aplikace s mikrokontroléry / Safety Microcontroller Applications

Nacev, Nikola January 2008 (has links)
The deals of thesis were described methods for designing safety applications, made analysis of possible microcontroller faults of long-run system, described software and hardware methods for fault detection in microcontroller and applied some March test to microcontroller. To application were chosen MATS+, PMOVI and March SS tests. These tests were modified to word-oriented memory. Further it was made analysis of modified tests to determination fault coverage, testing times and program memory requirement. To determination of fault coverage was created virtual memory with fault function models. March tests were compared with each other and with another pattern test (checkboard test).

Page generated in 0.1136 seconds