• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 182
  • 34
  • 19
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 264
  • 264
  • 66
  • 29
  • 28
  • 27
  • 25
  • 24
  • 22
  • 22
  • 21
  • 21
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

The reprocessing and extended interpretation of seismic reflection data recorded over the Hayesville-Fries thrust sheet in southwestern North Carolina

Scott, Stephen M. January 1987 (has links)
Reprocessing of Appalachian Ultradeep Core Hole (ADCOH) southern Appalachian seismic reflection data was focused on improving the reflection imaging and hence interpretability of seismic signatures previously interpreted as duplexes created by thrust stacking of thin beds of Paleozoic shelf strata. The reprocessed data are used to determine a more unique depth domain geometry for one of the proposed duplexes. Reprocessed data are partially improved through an increase in both stacking velocity coverage and datum statics velocity coverage as well as an appropriate use of residual statics. Interpretability increases from the improvement in resolution and the consideration of geologic strike direction relative to profile direction. Initial shotpoint ray trace modeling shows the chaotic nature of raypaths and some of the problems associated with the imaging of reflections when complex geology is involved. Data reprocessing and two-dimensional ray trace modeling yield results which suggest that the studied seismic signature is part of a broad hinterland-dipping duplex. At the trailing edge of the duplex itself beds appear to be successively fault truncated, perhaps explaining the increased amplitude and reflectivity in this zone. The truncations result in a wedge-shaped geometry that resembles the trailing edge of an antiformal stack duplex. The improved data also show 1) a shallow band of reflections that correlate with the Shope Fork and Chunky Gal Mountain faults within the Blue Ridge allochthon, 2) thrust ramping initiated by basement faulting that extends only a short distance into the overlying sedimentary strata, 3) a more highly faulted Grenville basement surface and, 4) almost intact Paleozoic shelf strata (?) being carried along the thrust surface serving and bounding the hinterland-dipping duplex. / M.S.
162

Structural evolution of the Max Meadows thrust sheet, Southwest Virginia

Gibson, R. G. (Richard G.) January 1983 (has links)
M.S.
163

Broken-formations of the Pulaski thrust sheet near Pulaski, Virginia

Schultz, Arthur P. January 1983 (has links)
Broken-formations (Hsu, 1974; Harris and Milici, 1977) occur in the lower part of the Pulaski thrust sheet and contain some of the most strongly deformed sedimentary rocks in the Valley and Ridge province of the southern Appalachians. Deformation in this zone ranges from grain-scale cataclasis to regional-scale faulting. The broken-formations are distinguished from rocks structurally higher on the sheet and from rocks of the underlying Saltville sheet by (1) a sharp increase in the variability of fold and fault styles, (2) greater ranges in fold plunges and dips of axial surfaces, (3) a low degree of preferred orientation of folds and faults, (4) an increase in the frequency of mesoscopic structures, and (5) the presence of Max Meadows tectonic breccia. Structural analyses indicate that deformation in the broken-formations is Alleghanian in age and that the deformed zone formed under elastico-frictional conditions, possibly under elevated fluid pressures with temporally variant stresses and that lithology may have played an important role in localizing the broken-formations along the base of the Pulaski sheet. / Ph. D.
164

Earthquakes to mountains : fault behavior of the San Andreas Fault and active tectonics of the Chinese Tian Shan /

Scharer, Katherine Maxine, January 2005 (has links)
Thesis (Ph. D.)--University of Oregon, 2005. / Typescript. Includes vita and abstract. Includes bibliographical references (leaves 173-185). Also available for download via the World Wide Web; free to University of Oregon users.
165

Analysis of a Gravity Traverse South of Portland, Oregon

Jones, Terry Dean 07 June 1977 (has links)
The state gravity maps of Oregon and Washington show a gravity high centered south of Portland, Oregon and a gravity low in the Tualatin Valley to the west disrupting the regional gravity gradient which is controlled by crustal thickening. Detailed gravity surveys done in the Portland area are consistent with the state gravity maps but show considerably more detail. Quantitative interpretation of this data has provided new information on the subsurface structure in this area; recent work has yielded corroborative evidence for a fault zone bounding the east side of the Portland Hills, and has indicated the presence of faults under the Portland Basin to the east which were previously unknown.
166

The Fries Fault near Riner, Virginia: an example of a polydeformed, ductile deformation zone

Kaygi, Patti Boyd January 1979 (has links)
The Fries Fault, a 1.2-2.3 km wide zone near Riner, is a major tectonic discontinuity in the Blue Ridge geologic province, characterized by progressive stages of continuous ductile deformation. Trending northeast with a shallow to moderate southeast dip, this fault juxtaposes Little River Gneiss on the southeast against Pilot Gneiss and the Chilhowee Formation to the northwest. A 0.8-1.2 km wide subzone of protomylonite within the Little River Gneiss grades into a 0.5-1.0 km wide mylonite subzone, the latter containing narrow bands of phyllotactic ultramylonite ranging in width from centimeters to tens of meters. Mylonitization is reflected by a marked reduction in grain size, elongation of quartz and fracturing of feldspar, all concomitant with the development of a mylonitic foliation (S<sub>m</sub>). Ductile deformation processes involving grain elongation, recovery and recrystallization, combined with chemical processes (primarily pressure solution), are the dominant strain-accommodation mechanisms in the formation of S<sub>m</sub>. Rocks within the fault zone have undergone four phases of Paleozoic deformation. An early S₁ foliation has been nearly completely transposed by S<sub>m</sub>(S₂), which dominates across most of the area. The development of S<sub>m</sub> was accompanied by a retrogressive metamorphism that altered basement rocks from lower amphibolite to greenschist facies. Chilhowee Group rocks remained at lower greenschist facies. Post-faulting deformation produced an S₃ crenulation cleavage associated with northeast trending, overturned F₃ folds. Subsequent refolding produced open, northwest trending F₄ folds. Although the bulk deformation is progressive simple shear, flattening is increasingly dominant during the later stages of deformation. / Master of Science
167

Strike-slip faulting and basin formation at the Guayape Fault--Valle de Catacamas intersection, Honduras, Central America

Gordon, Mark Buchanan, 1961- 24 June 2011 (has links)
The Valle de Catacamas forms a major basin along the central portion of the Guayape fault, the most prominent tectonic element of the Chortís block. The Guayape fault extends 290 km southwest from the Caribbean coast to the region of El Paraíso, Honduras, and may continue to the Pacific coast along a related prominent topographic feature, the Choluteca linear. Basins presently forming along the Guayape fault indicate that the fault is currently experiencing right-slip. The active features of the Valle de Catacamas displace older folds and reverse faults which apparently formed during an earlier period of sinistral shear. Thus, the Guayape fault has undergone at least two phases of movement, post-Cenomanian left-slip followed by the present right-slip. The geology of the valley suggests multiple stages of evolution. These include at least one period of thrust and reverse faulting, possibly associated with sinistral shear along the Guayape fault, and a recent episode of normal faulting associated with dextral shear on the Guayape fault. Thrusting of basement rocks over Jurassic strata on the south side of the valley was the earliest deformation to affect Mesozoic or Cenozoic rocks. The event can only be dated as post-Jurassic in age. The Cretaceous rocks of the Sierra de Agalta on the north side of the Valle de Catacamas are much more strongly deformed than similar rocks in central Honduras. In this range, the Aptian-Albian Atima Limestone commonly has a pervasive pressure solution cleavage which has not been reported from other locations on the Chortís block. The cleavage is apparently axial planar to the folds. The age of this deformation is constrained only as post-Cenomanian. SIR data indicate that these folds are deflected in sinistral shear near the Guayape fault. In addition, a major structural contact has a large left-lateral separation. The folds in the Sierra de Agalta are cut by the range-bounding normal fault of the Sierra de Agalta. Younger rocks are placed on older rocks by this normal fault, and fault slip data from small fault planes in the footwall block indicate normal faulting. The N 65° E strike of this normal fault, the N 35° E strike of the Guayape fault, and stress orientations inferred from fault slip data indicate that the present movement on the Guayape fault is right-slip. Fault slip data from the Guayape fault zone is heterogeneous as would be expected if two stage slip has occurred. / text
168

A structural study of folds and tear faults in the Roadside Hills area, Tucson Mountains, Pima County, Arizona

Showalter, Scott Rodholm January 1982 (has links)
No description available.
169

Neotectonic faulting along the central Bangong-Jiang suture zone, central Tibet

Safaya, Smriti. January 2006 (has links)
published_or_final_version / abstract / Earth Sciences / Master / Master of Philosophy
170

Identification of fault zones using gravity survey and subsurface exploration: a case study

Leung, Alfreda., 梁樂怡. January 2004 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science

Page generated in 0.1185 seconds