Spelling suggestions: "subject:"faults injection"" "subject:"gaults injection""
1 |
Évaluation de méthodes faible consommation contre les attaques matérielles / Evaluation of low power methods against hardware attacksOrdas, Sébastien 30 November 2015 (has links)
La consommation des circuits intégrés n'a cessé d'augmenter cette dernière décennie. Avec l'augmentation du prix de l'énergie et la démocratisation des systèmes embarqués, des méthodes permettant de gérer le compromis consommation performance, comme la gestion dynamique de la fréquence et de la tension d'alimentation ou encore du potentiel de substrat, ont été élaborées. Ces méthodes, qui sont de plus en plus couramment mises en œuvre dans les systèmes intégrés, permettent de diminuer la consommation de ceux-ci, et mieux de gérer le compromis consommation performance. Certains de ces circuits, embarquant ces méthodes peuvent avoir à effectuer des opérations traitant des informations confidentielles. Il est donc nécessaire de s'interroger sur l'éventuel impact de ces sur la sécurité des systèmes intégrés. Dans ce contexte, les travaux de thèse reportés dans le présent document, ont eu pour objectif d'analyser la compatibilité de ces méthodes de gestion de la consommation avec la conception de circuits robustes aux attaques matérielles. Plus particulièrement, l'objectif a été de déterminer si ces techniques de conception faible consommation, constituent des obstacles réels ou bien facilitent les attaques matérielles par observation et perturbation exploitant le canal électromagnétique. Dans un premier temps, une étude sur l'efficacité des attaques par observation en présence de gestion aléatoire de la tension, de la fréquence et de la polarisation de substrat a été conduite. Dans un deuxième temps, l'impact de la gestion dynamique des tensions d'alimentation et de substrat sur la capacité à injecter des fautes par médium électromagnétique a été étudié. Ce document présente l'ensemble des résultats de ces analyses.Mots-clés : Attaques Matérielles, Attaques par Canaux Auxiliaires, Attaques par fautes, Canal électromagnétique, DVFS, Body-Biasing. / The consumption of integrated circuits has been increasing over the last decade. With the increase of energy prices and the democratization of embedded systems, methods to manage the consumption performance compromise, such as the dynamic management of the frequency and the supply voltage or the substrate potential, were developed. These methods, which are becoming more commonly implemented in integrated systems, allow to reduce the consumption of those latter, and to better manage the tradeoff between consumption and performance.Some of these circuits, embedding these methods, may have to perform some operations with confidential information. It is therefore necessary to consider the possible impact of these methods on the safety of the integrated systems. In this context, the work reported in this thesis aimed to analyze the compatibility of these methods of power management with the design of robust circuits to physical attacks.Specifically, the objective was to determine whether these low-power techniques constitute real obstacles or facilitate the attacks by observation or perturbation exploiting the electromagnetic channel. Initially, a study on the effectiveness of attacks by observation in the presence of random management of voltage, frequency and substrate polarization was done. Secondly, the impact of the dynamic management of supply voltages and substrate polarization on the ability to inject faults by electromagnetic medium was studied. This document presents the overall results of these analyzes. Keyword : Hardware Attacks, Side Channel Attacks, Faults Attacks, Electromagnetic canal, DVFS, Body-biasing
|
2 |
UN FORMALISME UNIFIANT LES ATTAQUES PHYSIQUES SUR CIRCUITS CRYTOGRAPHIQUES ET SON EXPLOITATION AFIN DE COMPARER ET RECHERCHER DE NOUVELLES ATTAQUES / A FORMALISM FOR PHYSICAL ATTACKS ON CRYPTOGRAPHIC DEVICES AND ITS EXPLOITATION TO COMPARE AND RESEARCH NEWS ATTACKSLe Bouder, Hélène 24 October 2014 (has links)
Cette thèse se situe dans la cryptanalyse physique des algorithmes de chiffrement par blocs. Un algorithme cryptographique est conçu pour être mathématiquement robuste. Cependant, une fois implémenté dans un circuit, il est possible d'attaquer les failles de ce dernier. Par opposition à la cryptanalyse classique, on parle alors d'attaques physiques. Celles-ci ne permettent pas d'attaquer l'algorithme en soi, mais son implémentation matérielle. Il existe deux grandes familles d'attaques physiques différentes : les attaques par observation du circuit durant le chiffrement, et les attaques par injections de fautes, qui analysent l'effet d'une perturbation intentionnelle sur le fonctionnement du circuit. Les attaques physiques ont deux types d'objectifs : rechercher la clé ou faire de la rétro-conception (retrouver une partie d'un algorithme de chiffrement privé, ex : s-boxes modifiées). Bien que leurs principes semblent distincts, cette thèse présente un formalisme qui permet d'unifier toutes ces attaques. L'idée est de décrire les attaques physiques de façon similaire, afin de pouvoir les comparer. De plus, ce formalisme a permis de mettre en évidence de nouvelles attaques. Des travaux novateurs ayant pour objet de retrouver la clé de chiffrement d'un AES, uniquement avec la consommation de courant ont été menés. Une nouvelle attaque de type FIRE (Fault Injection for Reverse Engineering) pour retrouver les s-boxes d'un pseudo DES est également présentée dans la thèse. Ce travail a abouti sur une réflexion plus générale, sur les attaques par injections de fautes dans les schémas de Feistel classiques et généralisés. / The main subject of this work is the physical cryptanalysis of blocks ciphers. Even if cryptographic algorithms are properly designed mathematically, they may be vulnerable to physical attacks. Physical attacks are mainly divided in two families: the side channel attacks which are based on the observation of the circuit behaviour during the computation, and the fault injection attacks which consist in disturbing the computation in order to alter the correct progress of the algorithm. These attacks are used to target the cipher key or to reverse engineer the algorithm. A formalism is proposed in order to describe the two families in a unified way. Unifying the different attacks under a same formalism allows to deal with them with common mathematical tools. Additionally, it allows a comparison between different attacks. Using this framework, a generic method to assess the vulnerabilities of generalized Feistel networks to differential fault analysis is presented. This work is furthermore extended to improve a FIRE attack on DES-like cryptosystems with customized s-boxes.
|
Page generated in 0.0637 seconds