• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 8
  • 6
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 57
  • 33
  • 32
  • 23
  • 23
  • 17
  • 15
  • 13
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Modélisation et mesure des efforts axiaux le long d'une fixations montées avec interférence. Application aux structures aéronautiques / Experimental study and modelling of axial loads in interference fit fasteners with focus on aircraft structures

Nefissi, Naoufel 24 September 2012 (has links)
Les assemblages à base de fixations montées avec interférence et prétension sont largement utilisés dans le domaine de la construction aéronautique, notamment dans les zones structurales fortement chargées et soumises à des sollicitations de fatigue. Les performances de ces assemblages sont sensibles à de nombreux paramètres liés à la géométrie et aux matériaux mis en jeu. Pour optimiser la qualité de ces liaisons et atteindre les gains de durée de vie attendus, il est important de disposer de modèles à la fois rapides et fiables qui permettent, dès la phase de conception, d’évaluer l’influence des paramètres d’entrée sur les efforts caractéristiques de l’assemblage. Les travaux s’attachent, dans un premier temps, en s’appuyant sur une modélisation par éléments finis très détaillée du processus d’assemblage, à bien identifier les phénomènes mécaniques les plus caractéristiques des liaisons étudiées. Une approche analytique de premier niveau est ensuite développée. Elle conduit à un modèle d’estimation des efforts et de contraintes présentes dans les pièces assemblées qui produit des résultats très voisins de ceux obtenus avec le modèle de référence. Un modèle numérique dédié,basé sur des éléments finis axisymétriques et codé sous Matlab, est ensuite proposé. Il est apte à évaluer l’influence des variations des paramètres le long de l’interface entre les pièces tout en considérant les effets de bords. Une étude expérimentale basée sur une instrumentation de l’assemblage avec des fibres optiques à réseaux de Bragg est présentée. Les corrélations entre les résultats expérimentaux et ceux issus des modélisations sont très satisfaisantes / Assemblies based on interference fit fastener and preload are widely used in the fieldof aircraft construction, especially on structures heavily loaded and subjected to fatigue stresses.The performances of these assemblies are sensitive to many parameters related to the geometry and to the constitutive materials. To improve the quality of these assemblies and achieve the assembled parts. This simple model produces results very similar to those obtained with thereference model. A dedicated numerical model, based on axisymmetric finite elements and developed using Matlab code, is also proposed. It is able to evaluate the influence of parameter variations along the interface between the parts while considering the side effects. An experimental study based on an assembly instrumented with Fiber Bragg Gratings is presented.The correlations between the experimental results and those from the models are very satisfactory lifetime gains expected, it is important to use, from the early design phase, fast and reliable models in order to evaluate the influence of input parameters on the most significant efforts that take place around the fastener. In a preliminary phase, the work focuses on clearly identifyingthe mechanical phenomena characterizing the behavior of the mechanical connections understudy, using a very detailed finite element reference model of the assembly process. An analytical approach is then developed. It leads to a first level model for estimating loads and stresses in the assembled parts. This simple model produces results very similar to those obtained with the reference model. A dedicated numerical model, based on axisymmetric finite elements and developed using Matlab code, is also proposed. It is able to evaluate the influence of parameter variations along the interface between the parts while considering the side effects. An experimental study based on an assembly instrumented with Fiber Bragg Gratings is presented.The correlations between the experimental results and those from the models are very satisfactory
32

Structural monitoring with fibre-optic sensors using the pulsed time-of-flight method and other measurement techniques

Lyöri, V. (Veijo) 22 December 2007 (has links)
Abstract This thesis deals with the developing of fibre-optic instruments for monitoring the health of civil engineering and composite structures. A number of sensors have been tested for use with different road structures, concrete bridges, fibre reinforced polymer (FRP) containers and other composite specimens, the interrogation methods being mainly based on measuring optical power and time-of-flight (TOF). The main focus is on the development of a fibre-optic TOF measurement system and its applications, but different sensing needs and fibre-optic measurement systems are also reviewed, with the emphasis on commercial devices. Deformation in a road structure was studied with microbending sensors of gauge-length about 10 cm and a commercial optical time domain reflectometer (OTDR) in a quasi-distributed fashion. The responses of the optical fibre sensors during the one-year measurement period were similar in shape to those obtained with commercial strain gauges but the absolute measurement values typically deviated by several tens of per cent. Low dynamic range, crosstalk and poor signal-to-noise ratio proved to be the main problem when measuring several successive sensors with an OTDR. In another road investigation, microbending and speckle sensors were found useful for providing on/off-type information for traffic control applications. FRP composite containers were investigated with the focus on developing a continuous monitoring system for improving yield and quality by evaluating the state of cure during the manufacturing process and for assessing damage, e.g. delaminations, during service life. Standard multi-mode and single mode fibres with a typical length of a few hundreds of metres were embedded inside the walls of containers during the normal manufacturing process, and the measurements were carried out using an optical through-power technique and an OTDR. This largely empirical investigation revealed that the coating material and its thickness have an effect on loading sensitivity and on the applicability of the method for cure monitoring. The measurement data also indicated that the end-of-curing process and the location of external damage can be determined with a distributed optical fibre sensor and an OTDR. Several versions of a pulsed time-of-flight measurement system were developed for interrogating sensor arrays consisting of multiple long gauge-length sensors. The early versions based on commercial electronics were capable of producing relevant measurement data with a reasonable precision, but they suffered especially from poor spatial resolution, low sampling rate and long-term drift. The high precision TOF system developed in this thesis is capable of measuring time delays between a number of wideband reflectors, such as connectors or fibre Bragg gratings (FBG), along a fibre path with a precision of about 280 fs (rms-value) and a spatial resolution of about 3 ns (0.30 m) in a measurement time of 25 milliseconds. By using a fibre loop sensor with a reference fibre, a strain precision below 1 με and a measurement frequency of 4 Hz can be achieved. The system has proved comparable in performance to a commercial FBG interrogation system in monitoring the behaviour of a bridge deck, while the fact that it allows static and dynamic measurements with a number of long gauge-length sensors, also embedded in FRP composite material, makes this TOF device unique relative to other measurement systems.
33

Développement d’un capteur à fibre optique à base de réseaux de Bragg superposés de courtes et de longues périodes : application à la mesure discriminée de température et de déformation / [Development of an optical fiber sensor based on superimposed fiber Bragg and long period gratings] : [application to the discriminate measurement of temperature and strain]

Triollet, Sébastien 03 December 2010 (has links)
[Les capteurs à fibres optiques présentent des qualités intéressantes en termes de tailles et de poids relativement faibles qui permettent de réduire l'intrusivité du capteur dans le matériau (ou dans la structure composite). Ils sont également insensibles aux perturbations électromagnétiques, stables et durables dans le temps, mais aussi sensibles à plusieurs sollicitations comme la température, la déformation et la pression, d'où un besoin essentiel de les discriminer. Parmi eux on distingue les réseaux de Bragg : ceux à courtes périodes (FBG : Fiber Bragg Grating) et ceux à longues périodes (LPG : Long Period Grating). Le travail de thèse reporté dans ce manuscrit, traite du développement d'un capteur à fibre optique basé sur la superposition d'un LPG et d'un FBG afin de mesurer et de discriminer la température et la déformation. De nombreuses approches sont proposées dans la littérature afin de découpler ces deux sollicitations cependant elles ne permettent pas forcément une utilisation en conditions réelles de mesures. C'est pourquoi nous introduisons la notion d'efficacité de découplage avec le paramètre E qui permet de comparer toutes ces approches et met en évidence un très bon potentiel pour la structure à base de réseaux superposés LPG/FBG. La mise en œuvre d'un tel composant est décrite dans ce manuscrit et consiste à inscrire initialement le LPG puis le FBG au même endroit et sur toute la longueur du LPG. De plus ce type de structure permet un multiplexage qui, bien que faible, est néanmoins possible. Les étalonnages en température et en déformation du capteur ont permis de mettre en évidence une erreur de l'ordre de 2% sur la sensibilité à la température et de 3% sur la sensibilité à la déformation, ce qui conduit à une erreur sur l'estimation de la température et de la déformation mesurée de l'ordre de 0.3°C et 3 microdef. Dans un souci applicatif, le capteur à base de réseaux de Bragg superposés est tout d'abord utilisé pour instrumenter une structure métallique soumise simultanément à une variation de température et de déformation. Les valeurs mesurées présentent une incertitude maximale de 0.4°C pour la température et de 3 me pour la déformation ce qui permet de valider notre composant pour le contrôle et la surveillance de structures métalliques. La seconde application étudiée est relative à l'instrumentation de pièces composites stratifiées de type verre/époxy pour le suivi de procédés d'élaboration par voie liquide : VARTM (Vacuum Assisted Resin Transfer Molding) et LRI (Liquid Resin Infusion), pour lesquels l'évolution de la température et de la déformation au cours du procédé est suivie par le capteur à base de réseaux de Bragg superposés LPG/FBG. Des mesures diélectriques (DEA) sont également réalisées au cours de ces procédés et permettent la comparaison et la validation de nos résultats] / [Optical Fibre Sensors present some interesting qualities when considering its size and weight relatively light, which lead to a low intrusivity of the sensor in a material (a composite structure). These sensors are insensitive to electromagnetic phenomenon, stable and long lasting with time, but sensitive to several solicitations such as temperature, strain and pressure hence a real need of discrimination. Among these sensors, we may discern the Bragg gratings: the Long Period Grating one (LPG) and the Fibre Bragg Grating (FBG) one. This thesis work reports the development of an optical fibre sensor based on two superimposed Bragg gratings: LPG and FBG for measuring and discriminating temperature and strain. Several studies are reported in literature without getting a real condition use. That's why we propose a parameter E, which stand for the discrimination efficiency leading to a possible comparison of the existing techniques and highlight the quite good potential of superimposed Bragg gratings. The settings of such a structure are given in this thesis report and consist in writing LPG first, then FBG over the entire length of the LPG, which also gives multiplexing possibilities. Strain and temperature calibration steps give sensitivities errors of 2% for temperature and 3% for strain, which lead to estimated errors on measured strain and temperature of 0.3°C and 3 microstrain respectively. In an application point of view, the sensor has been used for the instrumentation of a metallic structure subjected to a variation of temperature and strain applied simultaneously. The results exhibit a maximum error of 0.4°C and 3me for temperature and strain respectively, which is a good validation of the sensor for structural control and monitoring purpose. The second studied application is about instrumentation of glass/epoxy composite specimen for monitoring manufacturing processes: VARTM (Vacuum Assisted Resin Transfer Moulding) and LRI (Liquid Resin Infusion), for which temperature and strain have been monitored with the superimposed Bragg gratings based sensor. Dielectric analyses have also been performed during those processes in order to compare and validate our results]
34

Grafické uživatelské rozhraní pro senzorické systémy / Graphical user interface for sensing systems

Dejdar, Petr January 2018 (has links)
Master thesis is focused on creating graphical user interface for the sensorical system based on Phase-OTDR. Theoretical part describes optical fibers, explains the principle of Bragg gratings, their production and their use in sensors. Methods of optical fiber attenuation and phase OTDR measurement are also described. Other part is focused on LabVIEW programming software and utilization of sensorical system and its components. Practical part deals with the user interface itself, which consists of two tabs. The first tab is designed for evaluation and display of measured data. The second tab is used to control and set up system components. Both of these tabs are further subdivided into other subtabs. Regarding the conclusion, further development of the program and options of hardware replacement for improving this sensorical system in the future will be discussed.
35

Modelování a optimalizace komplexních vláknových difrakčních struktur / Modelling and Optimization of Complex Fiber Diffractive Structures

Helán, Radek January 2009 (has links)
The thesis discusses the fiber Bragg gratings simulations, analysis and design. In the present time, there are several methods to simulate fiber gratings response based on the stated parameters that define their dimensions and material features. However, this work deals with a different issue, that is the synthesis of the input parameters for demanded spectral responses. The main aim of the work is to achieve a synthesis method that would help to discover parameters describing advanced grating structure, based on the required spectral reflectivity. The basic demand for the parameter synthesis is an achievement of the real values in terms of the consequent production of the suggested structure. The described synthesis method considers advanced fiber grating structure as a structure of several uniform grating sections. The input parameters are estimated in steps, using the well-known direct methods in order to obtain grating responses and feedback to establish the parameters changes. The principle methods involve establishment of initial input parameter values and necessary subsequent algorithm leading to optimize the required spectral response. The initial values are calculated by a simplified model based on the coupled theory equations that are handled for the periodic disturbances in cylindrical waveguide. The following optimization uses the multiple thin film stack and transfer matrix methods. The properties of grating structure spectral reflectivity are step by step calculated while using these direct methods. Input parameters are established in the next several steps. Establishment of input parameters is done subsequently, based on the demanded and calculated output spectral reflectivity properties. Optimizing process is limited by possibilities of the grating manufacture technology. It is possible to assemble arbitrary fiber grating structure taking in term the demanded spectral response. Nevertheless, the calculated input parameters are real for the following manufacture. This method could be used to design optical band stop filter, high-pass and low-pass filters or filters for special applications.
36

Structural health monitoring with fiber Bragg grating sensors embedded into metal through ultrasonic additive manufacturing

Chilelli, Sean Kelty 23 December 2019 (has links)
No description available.
37

Peculiarities of the Thermo-Optic Coefficient at High Temperatures in Fibers Containing Bragg Gratings

Fedin, Igor 15 August 2011 (has links)
No description available.
38

Desenvolvimento de transdutor em fibra óptica com estrutura hí­brida LPG-FBG para medição de propriedades térmicas de materiais. / Development of fiber-optic transducer based on LPG-FBG hybrid structure to measurement of thermal properties of materials.

Silva, Gleison Elias da 05 December 2017 (has links)
Este trabalho apresenta o estudo, a implementação e a caracterização de transdutores compostos por uma estrutura formada por grades de Bragg (FBG, Fiber Bragg Gratings) e grades de período longo (LPG, Long Period Gratings) em fibra óptica com cobertura metálica autoaquecida para medição da condutividade térmica e da difusividade térmica de materiais baseado no método do fio quente (HWM, Hot-Wire Method) convencional. O autoaquecimento da fibra óptica do dispositivo desenvolvido neste trabalho é provocado pela luz de espectro infravermelho injetada por um laser de bombeamento, que é espalhada por uma LPG e absorvida por um filme fino metálico depositado na superfície da fibra. Os transdutores apresentados são compactos, simples, robustos e imunes a interferências eletromagnéticas. O arranjo experimental utilizando o dispositivo híbrido LPG-FBG foi capaz de medir as condutividades térmicas do ar atmosférico e da água comum com precisões de 27% e 14%, respectivamente. Foram identificados vários fatores que afetam a precisão e a exatidão das medidas realizadas, sendo propostas diversas formas de correções de modo a melhorar o desempenho do arranjo. Foi demonstrada com sucesso a viabilidade da aplicação original do arranjo experimental utilizando o dispositivo híbrido LPG-FBG em fibra óptica autoaquecida para a medição de propriedades térmicas de fluidos (ar e água). / This work presents the study, implementation, and characterization of transducers composed of a structure formed by Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG) in optical fiber with self-heating coverage for measurement of thermal conductivity and thermal diffusivity of materials based on the Hot-Wire Method (HWM). The self-heating fiber optic device developed in this work is caused by the light of infrared spectrum injected by a pumping laser, which is spread by an LPG and absorbed by a thin metallic film deposited on the surface of the fiber. The transducers are compact, simple, robust and immune to electromagnetic interference. The experimental arrangement using the optical fiber sensor based on LPG-FBG hybrid structure was able to measure the thermal conductivity of atmospheric air and water with accuracies of 27% and 14%, respectively. Several factors were identified that affect the precision and the accuracy of the measures carried out, whereby various forms of corrections are being proposed to improve overall performance. The viability of the original application of the experimental arrangement using the LPG-FBG hybrid device in self-heating optical fiber for the measurement of thermal properties of fluids (air and water) has been successfully demonstrated.
39

Desenvolvimento de transdutor em fibra óptica com estrutura hí­brida LPG-FBG para medição de propriedades térmicas de materiais. / Development of fiber-optic transducer based on LPG-FBG hybrid structure to measurement of thermal properties of materials.

Gleison Elias da Silva 05 December 2017 (has links)
Este trabalho apresenta o estudo, a implementação e a caracterização de transdutores compostos por uma estrutura formada por grades de Bragg (FBG, Fiber Bragg Gratings) e grades de período longo (LPG, Long Period Gratings) em fibra óptica com cobertura metálica autoaquecida para medição da condutividade térmica e da difusividade térmica de materiais baseado no método do fio quente (HWM, Hot-Wire Method) convencional. O autoaquecimento da fibra óptica do dispositivo desenvolvido neste trabalho é provocado pela luz de espectro infravermelho injetada por um laser de bombeamento, que é espalhada por uma LPG e absorvida por um filme fino metálico depositado na superfície da fibra. Os transdutores apresentados são compactos, simples, robustos e imunes a interferências eletromagnéticas. O arranjo experimental utilizando o dispositivo híbrido LPG-FBG foi capaz de medir as condutividades térmicas do ar atmosférico e da água comum com precisões de 27% e 14%, respectivamente. Foram identificados vários fatores que afetam a precisão e a exatidão das medidas realizadas, sendo propostas diversas formas de correções de modo a melhorar o desempenho do arranjo. Foi demonstrada com sucesso a viabilidade da aplicação original do arranjo experimental utilizando o dispositivo híbrido LPG-FBG em fibra óptica autoaquecida para a medição de propriedades térmicas de fluidos (ar e água). / This work presents the study, implementation, and characterization of transducers composed of a structure formed by Fiber Bragg Gratings (FBG) and Long Period Gratings (LPG) in optical fiber with self-heating coverage for measurement of thermal conductivity and thermal diffusivity of materials based on the Hot-Wire Method (HWM). The self-heating fiber optic device developed in this work is caused by the light of infrared spectrum injected by a pumping laser, which is spread by an LPG and absorbed by a thin metallic film deposited on the surface of the fiber. The transducers are compact, simple, robust and immune to electromagnetic interference. The experimental arrangement using the optical fiber sensor based on LPG-FBG hybrid structure was able to measure the thermal conductivity of atmospheric air and water with accuracies of 27% and 14%, respectively. Several factors were identified that affect the precision and the accuracy of the measures carried out, whereby various forms of corrections are being proposed to improve overall performance. The viability of the original application of the experimental arrangement using the LPG-FBG hybrid device in self-heating optical fiber for the measurement of thermal properties of fluids (air and water) has been successfully demonstrated.
40

Experimental Analysis of Disc Thickness Variation Development in Motor Vehicle Brakes

Rodriguez, Alexander John, alex73@bigpond.net.au January 2006 (has links)
Over the past decade vehicle judder caused by Disc Thickness Variation (DTV) has become of major concern to automobile manufacturers worldwide. Judder is usually perceived by the driver as minor to severe vibrations transferred through the chassis during braking [1-9]. In this research, DTV is investigated via the use of a Smart Brake Pad (SBP). The SBP is a tool that will enable engineers to better understand the processes which occur in the harsh and confined environment that exists between the brake pad and disc whilst braking. It is also a tool that will enable engineers to better understand the causes of DTV and stick-slip the initiators of low and high frequency vibration in motor vehicle brakes. Furthermore, the technology can equally be used to solve many other still remaining mysteries in automotive, aerospace, rail or anywhere where two surfaces may come in contact. The SBP consists of sensors embedded into an automotive brake pad enabling it to measure pressure between the brake pad and disc whilst braking. The two sensor technologies investigated were Thick Film (TF) and Fibre Optic (FO) technologies. Each type was tested individually using a Material Testing System (MTS) at room and elevated temperatures. The chosen SBP was then successfully tested in simulated driving conditions. A preliminary mathematical model was developed and tested for the TF sensor and a novel Finite Element Analysis (FEA) model for the FO sensor. A new method called the Total Expected Error (TEE) method was also developed to simplify the sensor specification process to ensure consistent comparisons are made between sensors. Most importantly, our achievement will lead to improved comfort levels for the motorist.

Page generated in 0.037 seconds