• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 5
  • 2
  • 2
  • Tagged with
  • 43
  • 43
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The Immune Response in Parkinson's Disease

Lira, Arman 28 January 2014 (has links)
Microglia activity has been detected in Parkinson’s disease (PD) post-mortem brains and experimental animal models; however the precise interplay between microglia and dopamine neurons of the SNpc is not well understood. In the blood plasma of PD patients, our laboratory found elevated levels of interferon-gamma (IFN-γ), a proinflammatory cytokine and potent activator of microglia. Given this, we sought to untangle the immune responses relevant to PD in mice, examining IFN-γ’s involvement and signaling mechanism using an inflammatory co-culture model of microglia and midbrain neurons treated with rotenone. By means of RT-PCR, we discovered IFN-γ mRNA transcripts are produced by microglia, and this expression increases upon exposure to rotenone. We delineated IFN-γ’s signaling mechanism in co-cultures using different IFN-γ receptor deficient cells, and showed it engages receptors in an autocrine (not paracrine) manner to further microgliosis and dopamine cell loss. After exploring the innate immune response in a model of PD, we subsequently shifted focus to an in vivo system to better investigate any involvement of the delayed humoral arm of the adaptive immune system. Needing a time appropriate death paradigm, we developed a protracted low dose regimen of MPTP, which elicits dopaminergic cell death after 2 weeks of treatment. Subjected to this paradigm, Rag 2 mutant mice (deficient in both T and B cells) exhibit resistance to dopamine cell loss, microglia activation and motor impairments. Further evidence in support of immune involvement came with the resensitization of Rag2 mice to MPTP after reconstitution with WT splenocytes. Additionally, mice deficient in Fcγ receptors exhibited neuroprotection in our protracted degeneration model. Taken together, these data indicate the innate and humoral arm can modulate the microglial response to dopaminergic degeneration and may participate in Parkinson's disease.
22

Trafficking of FcγRIIA and FcγRIIB2 upon Endocytosis of Immune Complexes

Zhang, Christine 26 July 2013 (has links)
Fcγ receptors (FcγR) which recognize the Fc fraction of IgG play key roles in the modulation of a range of cellular responses as part of the host defense against foreign microbes and antigens. An important function of FcγR is to mediate internalization of soluble IgG-containing immune complexes via endocytosis. The mechanisms of internalization and intracellular transport of FcγR after internalization are less clear. In this thesis, I investigated the trafficking behaviours of human FcγRIIA and FcγRIIB2 upon clustering with immune complexes. In Chapter 3, I demonstrate FcγRIIA, when engaged with multivalent heat aggregated IgG (agIgG), is delivered along with its ligand to lysosomal compartments for degradation, whereas FcγRIIB2 becomes dissociated from the ligand and routed separately into a recycling pathway. FcγRIIA sorting to lysosomes requires receptor multimerization, but does not require either Src family kinase (SFK) activity or receptor ubiquitylation. Upon co-engagement, these two receptors are sorted independently to distinct final fates after dissociating from their co-clustering ligand. In Chapter 4, I show that while the ubiquitin-conjugating system is required for FcγRIIA-mediated endocytosis, it is not required for FcγRIIB2 endocytosis. FcγRIIB2 internalizes immune complexes at a faster rate than FcγRIIA and accelerates the endocytosis of FcγRIIA upon receptor co-engagement. Taken together, these results reveal fundamental differences in the trafficking behaviour of FcγRIIA and FcγRIIB2 both during the initial induction of endocytosis as well as during subsequent intracellular sorting.
23

Trafficking of FcγRIIA and FcγRIIB2 upon Endocytosis of Immune Complexes

Zhang, Christine 26 July 2013 (has links)
Fcγ receptors (FcγR) which recognize the Fc fraction of IgG play key roles in the modulation of a range of cellular responses as part of the host defense against foreign microbes and antigens. An important function of FcγR is to mediate internalization of soluble IgG-containing immune complexes via endocytosis. The mechanisms of internalization and intracellular transport of FcγR after internalization are less clear. In this thesis, I investigated the trafficking behaviours of human FcγRIIA and FcγRIIB2 upon clustering with immune complexes. In Chapter 3, I demonstrate FcγRIIA, when engaged with multivalent heat aggregated IgG (agIgG), is delivered along with its ligand to lysosomal compartments for degradation, whereas FcγRIIB2 becomes dissociated from the ligand and routed separately into a recycling pathway. FcγRIIA sorting to lysosomes requires receptor multimerization, but does not require either Src family kinase (SFK) activity or receptor ubiquitylation. Upon co-engagement, these two receptors are sorted independently to distinct final fates after dissociating from their co-clustering ligand. In Chapter 4, I show that while the ubiquitin-conjugating system is required for FcγRIIA-mediated endocytosis, it is not required for FcγRIIB2 endocytosis. FcγRIIB2 internalizes immune complexes at a faster rate than FcγRIIA and accelerates the endocytosis of FcγRIIA upon receptor co-engagement. Taken together, these results reveal fundamental differences in the trafficking behaviour of FcγRIIA and FcγRIIB2 both during the initial induction of endocytosis as well as during subsequent intracellular sorting.
24

Molecular analysis of the role of Fc[gamma]b, SHIP and PI 3-kinase in macrophage Fc[gamma] receptor function

Joshi, Trupti Prabhakar, January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 127-148).
25

Génétique et génomique des récepteurs de faible affinité pour le IgG - Implications pour le développement et l'analyse de la variabilité des effets des anticorps thérapeutiques / Genetic and genomic of low affinity receptors for IgG - Implications for developement and variability effect of therapeutic antibodies

Lejeune, Julien 09 June 2010 (has links)
Les récepteurs Fc jouent un rôle important en permettant aux cellules de l’immunité d’interagir avec lesanticorps, notamment thérapeutiques. Dans cette thèse, nous montrons que des mécanismes de recombinaisonhomologue, de knock-in par insertion rétrovirale et de duplication segmentale ont permis l’acquisition chez lesPrimates (FCGR2A) puis chez les Hominidés (FCGR2C et FCGR3B) de gènes codant des récepteurs Fc ayantde nouvelles propriétés, tout en rendant instable ce cluster (variation de nombre de copies), et très complexeson analyse chez l’Homme. Grâce à une approche originale de pyroséquencage, nous sommes parvenus àétudier simultanément le polymorphisme allélique ORF/STOP du FCGR2C, ainsi que son nombre de copies.Nous avons ainsi révélé de nouveaux déséquilibres de liaison, s’ajoutant au déséquilibre FCGR3A-FCGR2Adont nous avons montré l’importance d’une prise en compte adaptée dans les études d’association avec laréponse aux anticorps thérapeutiques. Ces résultats devraient contribuer à améliorer le développement préclinique(pertinence des modèles animaux) et clinique (variabilité des effets) des anticorps thérapeutiques. / Fc receptors play an important allowing connexion between immune cells and antibody notably therapeutic. Inthis thesis, we have shown that homologous recombination events, knock-in by retroviral insertion andsegmental duplication led to the acquisition in primates (FCGR2A) then in Hominids (FCGR2C and FCGR3B)of genes coding for Fc receptors with new properties, led to genomic instability of the cluster (copy numbervariation) and to complex analysis in human. Through a original pyrosequencing approach, we have studiedsimultaneously ORF/STOP polymorphism and copy number variation of FCGR2C. We have also revealed newlinkage disequilibrium, additionnaly to FCGR3A-FCGR2A disequilibrium which we have shown theimportance of a suitable methdology in association studies with responses to therapeutic antibodies. Theseresults contribute to improve pre-clinical (of animal models) and clinical (variability effects) development oftherapeutic antibodies.
26

Investigating the role of IgG and Fcγ receptors in intestinal inflammation

Castro Dopico, Tomas January 2018 (has links)
IgA is the dominant antibody isotype found at mucosal surfaces during homeostasis. However, genetic variation in Fcγ receptors (FcγRs), a family of receptors that mediate immune cell activation by IgG, influences susceptibility to inflammatory bowel disease (IBD), suggesting that IgG may be important during gut inflammation. IBD is a chronic relapsing condition with two major subtypes, Crohn’s disease (CD) and ulcerative colitis (UC), both driven by aberrant immune responses to commensals. In the first part of this thesis, we sought to investigate anti-commensal IgG responses in patients with UC and to determine the mechanism by which local IgG might contribute to intestinal inflammation. We found that UC and murine dextran sodium sulfate (DSS)-induced colitis are associated with a significant increase in anti-commensal IgG and local enrichment of FcγR signalling pathway genes. The genes most robustly correlated with FCGR2A, an activating FcγR associated with UC susceptibility, were IL1B andCXCL8. Ex vivo stimulation of human and murine lamina propria mononuclear cells with IgG immune complexes (IC) resulted in an increase in these cytokines/chemokines. In vivo manipulation of the macrophage FcγR A/I ratio in transgenic mice determined IL-1β and Th17 cell induction. Finally, IL-1β blockade in mice with a high FcγR A/I ratio reduced IL-17 and IL-22-producing T cells and the severity of colitis. Our data reveal that commensal-specific IgG contributes to intestinal inflammation via FcγR-dependent, IL-1β-mediated Th17 activation. In this thesis, we have also addressed the interplay between IgG and group 3 innate lymphoid cells (ILC3s). ILC3s are closely related to natural killer cells, which are known to express FcγRs, and are characterised by their production of Th17 cytokines. Here, we have shown that ILC3s express FcγRs, that ICs drive IL-22 production and MHC class II expression by ILC3s, and FcγR signalling induces a transcriptional programme that reinforces ILC3 maintenance and functionality. These results represent a new paradigm for ILC activation, with direct regulation by the adaptive immune response. Finally, we have begun to address the role played by ILC3-derived cytokines in the regulation of local tissue-resident immune cells. We have demonstrated that ILC depletion significantly alters the activation state of intestinal macrophages, resulting in detrimental bacterial outgrowth following C. rodentium infection but protection from overwhelming DSS-induced inflammation. We have shown that GM-CSF promotes macrophage IL-1β and IL-23 production, which in turn act to reinforce ILC3-derived GM-CSF and IL-22 secretion in vitro, respectively. Therefore, ILC3s are essential coordinators of the local inflammatory response within the gut through activation and possible recruitment of immune cells, and their modulation may be beneficial in the treatment of IBD.
27

"Caracterização da função dos receptores Fc de imunoglobulinas nas bacteremias" / Characterization of immunoglobulins Fc receptors in bacteremia

Fabiano Pinheiro da Silva 13 December 2005 (has links)
Sepse é a primeira causa de morte em Unidades de Terapia Intensiva. A gravidade dessa doença é considerada conseqüência de um desequilíbrio da resposta inflamatória e, apesar dos avanços em diagnóstico e tratamento, os índices de mortalidade se mantêm inalterados. O papel dos receptores Fc de immunoglobulinas nesta situação é pouco esclarecido. Tais receptores deflagram respostas imunes opostas, que dependem do receptor envolvido e podem ser tanto ativatórias, quanto inibitórias. As respostas ativatórias são atribuídas a um motivo chamado ITAM, enquanto as inibitórias são relacionadas ao motivo ITIM. Camundongos apresentam dois receptores de IgG ativatórios (FcγRI e FcγRIII), que portam motivos ITAM, associados a uma sub-unidade conhecida como cadeia gamma, assim como um receptor de IgG que apresenta um motivo ITIM na sua porção intra-citoplasmática (FcγRII). Este trabalho teve como objetivo o estudo do papel destes receptores em bacteremias e sepse. Para isso, utilizamos um modelo de peritonite induzida por ligadura e punção cecal. Este projeto descreve pela primeira vez, um papel importante do FcRγII na indução de apoptose em linfócitos B, durante infecção bacteriana severa. Nossos resultados colocaram em evidência, ainda, o fato de que animais deficientes em cadeia gamma apresentam mortalidade diminuída, quando submetidos a esse modelo de peritonite, e que essa diminuição é associada a menores valores de TNFα no soro e nos fluidos peritoneais, menor recrutamento peritoneal de células inflamatórias, assim como a um surpreendente aumento na fagocitose de E. coli. Hemocultura e cultura do lavado peritoneal desses animais revelaram uma flora multimicrobiana, enquanto camundongos selvagens apresentaram uma forte predominância de E. coli e um número total bastante superior de bactérias. Esse papel inibitório da cadeia gamma pode estar relacionado a mecanismos de auto-tolerância. Lisado total de células peritoneais de camundongos deficientes em cadeia gamma apresentam fosforilação aumentada de diversas proteínas, quando comparados a lisados obtidos, a partir de camundongos selvagens. Estudos semelhantes realizados com camundongos transgênicos para o receptor de IgA (FcαRI), entretanto, não demonstraram um papel crucial desse receptor nesta doença. Este trabalho abre, portanto, novas perspectivas para o tratamento de doenças infecciosas, através de intervenção sobre a cadeia gamma e coloca em rediscussão os conceitos atuais de ITAM e ITIM. / Sepsis is the first cause of death in Critical Care Units and despite the development in its diagnosis and treatment, mortality remains unaffected. The role of immunoglobulin Fc receptors in sepsis is not clearly understood. These receptors initiate opposing responses, depending on their aggregation by the ligand and can induce activating or inhibitory responses. The activating responses are attributed to a motif known as ITAM, and the inhibitory responses to another one called ITIM. Mice express two activating IgG receptors (FcγRI et FcγRIII) which have ITAM motifs in the intracytoplasmic domain of an associated subunit, called the FcRγ chain, as well as an inhibitory IgG receptor which possesses an ITIM motif in its intracytoplasmic domain. The objective of this work is to study the importance of these receptors in bacteremia and in sepsis. To this aim, we have used a peritonitis model, induced by cecal ligation and puncture (CLP). This project describes for the first time, an important role of FcγRII in B lymphocytes apoptosis. Moreover, our results show that FcRγ chain knockout mice have a decreased mortality in this model, which is associated to diminished TNFα serum and peritoneal fluids levels, to a reduced recruitment of peritoneal inflammatory cells and to a surprising increase in E. coli phagocytosis. Blood and peritoneal fluid cultures have shown a polymicrobial flora 24 hours post-CLP for FcRγ-chain deficient mice, whereas wild-type mice present a strong predominance of E. coli in the same cultures and an increased bacteria total count. Lysates from FcRγ-chain deficient peritoneal cells revealed augmented phosphorylation of many proteins, as compared to wild-type cells. This FcRγ chain inhibitory role could be related to self-tolerance mechanisms. This work opens new perspectives for the treatment of bacterial diseases, proposing FcRγ chain targeting and the reexamination of the actual concepts of ITAM and ITIM.
28

The Immune Response in Parkinson's Disease

Lira, Arman January 2014 (has links)
Microglia activity has been detected in Parkinson’s disease (PD) post-mortem brains and experimental animal models; however the precise interplay between microglia and dopamine neurons of the SNpc is not well understood. In the blood plasma of PD patients, our laboratory found elevated levels of interferon-gamma (IFN-γ), a proinflammatory cytokine and potent activator of microglia. Given this, we sought to untangle the immune responses relevant to PD in mice, examining IFN-γ’s involvement and signaling mechanism using an inflammatory co-culture model of microglia and midbrain neurons treated with rotenone. By means of RT-PCR, we discovered IFN-γ mRNA transcripts are produced by microglia, and this expression increases upon exposure to rotenone. We delineated IFN-γ’s signaling mechanism in co-cultures using different IFN-γ receptor deficient cells, and showed it engages receptors in an autocrine (not paracrine) manner to further microgliosis and dopamine cell loss. After exploring the innate immune response in a model of PD, we subsequently shifted focus to an in vivo system to better investigate any involvement of the delayed humoral arm of the adaptive immune system. Needing a time appropriate death paradigm, we developed a protracted low dose regimen of MPTP, which elicits dopaminergic cell death after 2 weeks of treatment. Subjected to this paradigm, Rag 2 mutant mice (deficient in both T and B cells) exhibit resistance to dopamine cell loss, microglia activation and motor impairments. Further evidence in support of immune involvement came with the resensitization of Rag2 mice to MPTP after reconstitution with WT splenocytes. Additionally, mice deficient in Fcγ receptors exhibited neuroprotection in our protracted degeneration model. Taken together, these data indicate the innate and humoral arm can modulate the microglial response to dopaminergic degeneration and may participate in Parkinson's disease.
29

Revisiting Erk signaling following B cell antigen receptor activation by different stimulatory agents

Bartsch, Caren 15 September 2016 (has links)
No description available.
30

Antibody Feedback Regulation : From Epitope Masking to T Helper Cell Activation

Getahun, Andrew January 2004 (has links)
<p>Antibodies have the ability to influence the antibody response against the very antigen they are specific for, in a process called antibody feedback regulation. Depending on the nature of the antigen, the antibody response can be either enhanced or almost completely inhibited. This thesis focuses on the underlying mechanisms of antibody feedback regulation <i>in vivo</i>. </p><p>Antigen-specific IgG can inhibit the antibody response to a particulate antigen. Based on its ability to inhibit B cell activation, the inhibitory FcγRIIB (low affinity receptor for IgG) has been suggested to be involved. Here we show that although FcγRIIB is required for efficient suppression<i> in vitro, </i>it is not required <i>in vivo</i>. Therefore, even though FcγRIIB can inhibit antibody responses, other mechanisms (such as epitope masking and enhanced antigen clearance) play a more dominant role<i> in vivo</i>.</p><p>The antibody response to soluble antigen is greatly enhanced when it is introduced to the immune system in complex with antigen-specific IgG or IgE. We found that FcγRIIB attenuates the magnitude of IgG-mediated enhancement. In mice lacking FcγRIIB, IgG enhanced the antibody response much more efficiently than in normal mice.</p><p>Since B cells require CD4<sup>+</sup> T cell help in order to become antibody-producing cells, we examined the CD4<sup>+</sup> T cell response to immune complexes <i>in vivo</i>. Using an adoptive transfer strategy with transgenic ovalbumin (OVA)-specific CD4<sup>+</sup>T cells, we could show that the enhanced OVA-specific IgG response to IgG2a/OVA and IgE/OVA complexes was preceded by a potent OVA-specific CD4<sup>+</sup> T cell response. IgG2a-mediated enhancement was dependent on activating Fcγ receptors, whereas IgE-mediated enhancement was dependent on CD23, the low affinity receptor for IgE. We identified CD23<sup>+</sup> B cells as the responsible effector cells for IgE-mediated enhancement<i> in vivo</i>. Taken together, these results show that Fc receptor-mediated antigen presentation is a major mechanism underlying antibody feedback enhancement. </p>

Page generated in 0.0288 seconds