• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 277
  • 73
  • 23
  • 15
  • 10
  • 7
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 505
  • 505
  • 124
  • 117
  • 107
  • 98
  • 94
  • 94
  • 89
  • 73
  • 73
  • 69
  • 65
  • 61
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

High-Level Intuitive Features (HLIFs) for Melanoma Detection

Amelard, Robert January 2013 (has links)
Feature extraction of segmented skin lesions is a pivotal step for implementing accurate decision support systems. Existing feature sets combine many ad-hoc calculations and are unable to easily provide intuitive diagnostic reasoning. This thesis presents the design and evaluation of a set of features for objectively detecting melanoma in an intuitive and accurate manner. We call these "high-level intuitive features" (HLIFs). The current clinical standard for detecting melanoma, the deadliest form of skin cancer, is visual inspection of the skin's surface. A widely adopted rule for detecting melanoma is the "ABCD" rule, whereby the doctor identifies the presence of Asymmetry, Border irregularity, Colour patterns, and Diameter. The adoption of specialized medical devices for this cause is extremely slow due to the added temporal and financial burden. Therefore, recent research efforts have focused on detection support systems that analyse images acquired with standard consumer-grade camera images of skin lesions. The central benefit of these systems is the provision of technology with low barriers to adoption. Recently proposed skin lesion feature sets have been large sets of low-level features attempting to model the widely adopted ABCD criteria of melanoma. These result in high-dimensional feature spaces, which are computationally expensive and sparse due to the lack of available clinical data. It is difficult to convey diagnostic rationale using these feature sets due to their inherent ad-hoc mathematical nature. This thesis presents and applies a generic framework for designing HLIFs for decision support systems relying on intuitive observations. By definition, a HLIF is designed explicitly to model a human-observable characteristic such that the feature score can be intuited by the user. Thus, along with the classification label, visual rationale can be provided to further support the prediction. This thesis applies the HLIF framework to design 10 HLIFs for skin cancer detection, following the ABCD rule. That is, HLIFs modeling asymmetry, border irregularity, and colour patterns are presented. This thesis evaluates the effectiveness of HLIFs in a standard classification setting. Using publicly-available images obtained in unconstrained environments, the set of HLIFs is compared with and against a recently published low-level feature set. Since the focus is on evaluating the features, illumination correction and manually-defined segmentations are used, along with a linear classification scheme. The promising results indicate that HLIFs capture more relevant information than low-level features, and that concatenating the HLIFs to the low-level feature set results in improved accuracy metrics. Visual intuitive information is provided to indicate the ability of providing intuitive diagnostic reasoning to the user.
12

Linear Discriminant Analysis Using a Generalized Mean of Class Covariances and Its Application to Speech Recognition

NAKAGAWA, Seiichi, KITAOKA, Norihide, SAKAI, Makoto 01 March 2008 (has links)
No description available.
13

Face Classification Using Discriminative Features and Classifier Combination

Masip Rodó, David 16 June 2005 (has links)
A mesura que la tecnologia evoluciona, apareixen noves aplicacions en el mon de la classificació facial. En el reconeixement de patrons, normalment veiem les cares com a punts en un espai de alta dimensionalitat definit pels valors dels seus pixels. Aquesta aproximació pateix diversos problemes: el fenomen de la "la maledicció de la dimensionalitat", la presència d'oclusions parcials o canvis locals en la il·luminació. Tradicionalment, només les característiques internes de les imatges facials s'han utilitzat per a classificar, on normalment es fa una extracció de característiques. Les tècniques d'extracció de característiques permeten reduir la influencia dels problemes mencionats, reduint també el soroll inherent de les imatges naturals alhora que es poden aprendre característiques invariants de les imatges facials. En la primera part d'aquesta tesi presentem alguns mètodes d'extracció de característiques clàssics: Anàlisi de Components Principals (PCA), Anàlisi de Components Independents (ICA), Factorització No Negativa de Matrius (NMF), i l'Anàlisi Discriminant de Fisher (FLD), totes elles fent alguna mena d'assumpció en les dades a classificar. La principal contribució d'aquest treball es una nova família de tècniques d'extracció de característiques usant el algorisme del Adaboost. El nostre mètode no fa cap assumpció en les dades a classificar, i construeix de forma incremental la matriu de projecció tenint en compte els exemples mes difícilsPer altra banda, en la segon apart de la tesi explorem el rol de les característiques externes en el procés de classificació facial, i presentem un nou mètode per extreure un conjunt alineat de característiques a partir de la informació externa que poden ser combinades amb les tècniques clàssiques millorant els resultats globals de classificació. / As technology evolves, new applications dealing with face classification appear. In pattern recognition, faces are usually seen as points in a high dimensional spaces defined by their pixel values. This approach must deal with several problems such as: the curse of dimensionality, the presence of partial occlusions or local changes in the illumination. Traditionally, only the internal features of face images have been used for classification purposes, where usually a feature extraction step is performed. Feature extraction techniques allow to reduce the influence of the problems mentioned, reducing also the noise inherent from natural images and learning invariant characteristics from face images. In the first part of this thesis some internal feature extraction methods are presented: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Non Negative Matrix Factorization (NMF), and Fisher Linear Discriminant Analysis (FLD), all of them making some kind of the assumption on the data to classify. The main contribution of our work is a non parametric feature extraction family of techniques using the Adaboost algorithm. Our method makes no assumptions on the data to classify, and incrementally builds the projection matrix taking into account the most difficult samples.On the other hand, in the second part of this thesis we also explore the role of external features in face classification purposes, and present a method for extracting an aligned feature set from external face information that can be combined with the classic internal features improving the global performance of the face classification task.
14

Automatisk detektering av diken i LiDAR-data / Automatic detection of ditches in LiDAR collected data

Wasell, Richard January 2011 (has links)
Den här rapporten har utrett möjligheten att automatiskt identifiera diken frånflygburet insamlat LiDAR-data. Den metod för identifiering som har valts harförst skapat en höjdbild från LiDAR-data. Därefter har den tagit fram kandidatertill diken genom att vektorisera resultatet från en linjedetektering. Egenskaper-na för dikeskandidaterna har sedan beräknats genom en analys av höjdprofilerför varje enskild kandidat, där höjdprofilerna skapats utifrån ursprungliga data.Genom att filtrera kandidaterna efter deras egenskaper kan dikeskartor med an-vändarspecificerade mått på diken presenteras i ett vektorformat som underlättarvidare användning. Rapporten beskriver hur algoritmen har implementerats ochpresenterar också exempel på resultat. Efter en analys av algoritmen samt förslagpå förbättringar presenteras den viktigaste behållningen av rapporten; Att det ärmöjligt med automatisk detektering av diken. / This Master’s thesis is investigating the possibility of automatically identifyingditches in airborne collected LiDAR data. The chosen approach to identificationcommences by creating an elevation picture from the LiDAR data. Then it usesthe result of a line detection to exhibit candidates for ditches. The properties forthe various candidates are calculated through an analysis of the elevation profile forthe candidates, where the elevation profiles are created from the original data. Byfiltering the candidates according to their calculated properties, maps with ditchesconforming to user-specified limits are created and presented in vector format.This thesis describes how the algorithm is implemented and gives examples ofresults. After an analysis of the algorithm and a proposal for improvements, itis suggested that automatic detection of ditches in LiDAR collected data is anachievable objective.
15

Facilitation of visual pattern recognition by extraction of relevant features from microscopic traffic data

Fields, Matthew James 15 May 2009 (has links)
An experimental approach to traffic flow analysis is presented in which methodology from pattern recognition is applied to a specific dataset to examine its utility in determining traffic patterns. The selected dataset for this work, taken from a 1985 study by JHK and Associates (traffic research) for the Federal Highway Administration, covers an hour long time period over a quarter mile section and includes nine different identifying features for traffic at any given time. The initial step is to select the most pertinent of these features as a target for extraction and local storage during the experiment. The tools created for this approach, a two-level hierarchical group of operators, are used to extract features from the dataset to create a feature space; this is done to minimize the experimental set to a matrix of desirable attributes from the vehicles on the roadway. The application is to identify if this data can be readily parsed into four distinct traffic states; in this case, the state of a vehicle is defined by its velocity and acceleration at a selected timestamp. A three-dimensional plot is used, with color as the third dimension and seen from a top-down perspective, to initially identify vehicle states in a section of roadway over a selected section of time. This is followed by applying k-means clustering, in this case with k=4 to match the four distinct traffic states, to the feature space to examine its viability in determining the states of vehicles in a time section. The method’s accuracy is viewed through silhouette plots. Finally, a group of experiments run through a decision-tree architecture is compared to the kmeans clustering approach. Each decision-tree format uses sets of predefined values for velocity and acceleration to parse the data into the four states; modifications are made to acceleration and deceleration values to examine different results. The three-dimensional plots provide a visual example of congested traffic for use in performing visual comparisons of the clustering results. The silhouette plot results of the k-means experiments show inaccuracy for certain clusters; on the other hand, the decision-tree work shows promise for future work.
16

Evaluation of Combinational Use of Discriminant Analysis-Based Acoustic Feature Transformation and Discriminative Training

TAKEDA, Kazuya, NAKAGAWA, Seiichi, HATTORI, Yuya, KITAOKA, Norihide, SAKAI, Makoto 01 February 2010 (has links)
No description available.
17

Acoustic Feature Transformation Based on Discriminant Analysis Preserving Local Structure for Speech Recognition

TAKEDA, Kazuya, KITAOKA, Norihide, SAKAI, Makoto 01 May 2010 (has links)
No description available.
18

Wavelet based analysis of circuit breaker operation

Ren, Zhifang Jennifer 30 September 2004 (has links)
Circuit breaker is an important interrupting device in power system network. It usually has a lifetime about 20 to 40 years. During breaker's service time, maintenance and inspection are imperative duties to achieve its reliable operation. To automate the diagnostic practice for circuit breaker operation and reduce the utility company's workload, Wavelet based analysis software of circuit breaker operation is developed here. Combined with circuit breaker monitoring system, the analysis software processes the original circuit breaker information, speeds up the analysis time and provides stable and consistent evaluation for the circuit breaker operation.
19

Facilitation of visual pattern recognition by extraction of relevant features from microscopic traffic data

Fields, Matthew James 10 October 2008 (has links)
An experimental approach to traffic flow analysis is presented in which methodology from pattern recognition is applied to a specific dataset to examine its utility in determining traffic patterns. The selected dataset for this work, taken from a 1985 study by JHK and Associates (traffic research) for the Federal Highway Administration, covers an hour long time period over a quarter mile section and includes nine different identifying features for traffic at any given time. The initial step is to select the most pertinent of these features as a target for extraction and local storage during the experiment. The tools created for this approach, a two-level hierarchical group of operators, are used to extract features from the dataset to create a feature space; this is done to minimize the experimental set to a matrix of desirable attributes from the vehicles on the roadway. The application is to identify if this data can be readily parsed into four distinct traffic states; in this case, the state of a vehicle is defined by its velocity and acceleration at a selected timestamp. A three-dimensional plot is used, with color as the third dimension and seen from a top-down perspective, to initially identify vehicle states in a section of roadway over a selected section of time. This is followed by applying k-means clustering, in this case with k=4 to match the four distinct traffic states, to the feature space to examine its viability in determining the states of vehicles in a time section. The method's accuracy is viewed through silhouette plots. Finally, a group of experiments run through a decision-tree architecture is compared to the kmeans clustering approach. Each decision-tree format uses sets of predefined values for velocity and acceleration to parse the data into the four states; modifications are made to acceleration and deceleration values to examine different results. The three-dimensional plots provide a visual example of congested traffic for use in performing visual comparisons of the clustering results. The silhouette plot results of the k-means experiments show inaccuracy for certain clusters; on the other hand, the decision-tree work shows promise for future work.
20

High-Level Intuitive Features (HLIFs) for Melanoma Detection

Amelard, Robert January 2013 (has links)
Feature extraction of segmented skin lesions is a pivotal step for implementing accurate decision support systems. Existing feature sets combine many ad-hoc calculations and are unable to easily provide intuitive diagnostic reasoning. This thesis presents the design and evaluation of a set of features for objectively detecting melanoma in an intuitive and accurate manner. We call these "high-level intuitive features" (HLIFs). The current clinical standard for detecting melanoma, the deadliest form of skin cancer, is visual inspection of the skin's surface. A widely adopted rule for detecting melanoma is the "ABCD" rule, whereby the doctor identifies the presence of Asymmetry, Border irregularity, Colour patterns, and Diameter. The adoption of specialized medical devices for this cause is extremely slow due to the added temporal and financial burden. Therefore, recent research efforts have focused on detection support systems that analyse images acquired with standard consumer-grade camera images of skin lesions. The central benefit of these systems is the provision of technology with low barriers to adoption. Recently proposed skin lesion feature sets have been large sets of low-level features attempting to model the widely adopted ABCD criteria of melanoma. These result in high-dimensional feature spaces, which are computationally expensive and sparse due to the lack of available clinical data. It is difficult to convey diagnostic rationale using these feature sets due to their inherent ad-hoc mathematical nature. This thesis presents and applies a generic framework for designing HLIFs for decision support systems relying on intuitive observations. By definition, a HLIF is designed explicitly to model a human-observable characteristic such that the feature score can be intuited by the user. Thus, along with the classification label, visual rationale can be provided to further support the prediction. This thesis applies the HLIF framework to design 10 HLIFs for skin cancer detection, following the ABCD rule. That is, HLIFs modeling asymmetry, border irregularity, and colour patterns are presented. This thesis evaluates the effectiveness of HLIFs in a standard classification setting. Using publicly-available images obtained in unconstrained environments, the set of HLIFs is compared with and against a recently published low-level feature set. Since the focus is on evaluating the features, illumination correction and manually-defined segmentations are used, along with a linear classification scheme. The promising results indicate that HLIFs capture more relevant information than low-level features, and that concatenating the HLIFs to the low-level feature set results in improved accuracy metrics. Visual intuitive information is provided to indicate the ability of providing intuitive diagnostic reasoning to the user.

Page generated in 0.1339 seconds