Spelling suggestions: "subject:"feedforward neural network"" "subject:"jeedforward neural network""
1 |
Multi-label classification with optimal thresholding for multi-composition spectroscopic analysisGan, Luyun 30 August 2019 (has links)
Spectroscopic analysis has several applications in physics, chemistry, bioinformatics, geophysics, astronomy, etc. It has been widely used for detecting mineral samples, gas emission, and food volatiles. Machine learning algorithms for spectroscopic analysis focus on either regression or single-label classification problems. Using multi-label classification to identify multiple chemical components from the spectrum, has not been explored. In this thesis, we implement Feed-forward Neural Network with Optimal Thresholding (FNN-OT) identifying gas species among a multi gas mixture in a cluttered environment. Spectrum signals are initially processed by a feed-forward neural network (FNN) model, which produces individual prediction scores for each gas. These scores will be the input of a following optimal thresholding (OT) system. Predictions of each gas component in one testing sample will be made by comparing its output score from FNN against a threshold from the OT system. If its output score is larger than the threshold, the prediction is 1 and 0 otherwise, representing the existence/non-existence of that gas component in the spectrum.
Using infrared absorption spectroscopy and tested on synthesized spectral datasets, our approach outperforms FNN itself and conventional binary relevance - Partial Least Squares with Binary Relevance (PLS-BR). All three models are trained and tested on 18 synthesized datasets with 6 levels of \signal-to-noise ratio and 3 types of gas correlation. They are evaluated and compared with micro, macro and sample averaged precision, recall and F1 score. For mutually independent and randomly correlated gas data, FNN-OT yields better performance than FNN itself or the conventional PLS-BR, by significantly by increasing recall without sacrificing much precision. For positively correlated gas data, FNN-OT performs better in capturing information of positive label correlation from noisy datasets than the other two models. / Graduate
|
2 |
Investigation of phytoplankton dynamics using time-series analysis of biophysical parameters in Gippsland Lakes, South-eastern AustraliaKhanna, Neha, Neha.Khanna@mdbc.gov.au January 2007 (has links)
There is a need for ecological modelling to help understand the dynamics in ecological systems, and thus aid management decisions to maintain or improve the quality of the ecological systems. This research focuses on non linear statistical modelling of observations from an estuarine system, Gippsland Lakes, on the south-eastern coast of Australia. Feed forward neural networks are used to model chlorophyll time series from a fixed monitoring station at Point King. The research proposes a systematic approach to modelling in ecology using feed forward neural networks, to ensure: (a) that results are reliable, (b) to improve the understanding of dynamics in the ecological system, and (c) to obtain a prediction, if possible. An objective filtering algorithm to enable modelling is presented. Sensitivity analysis techniques are compared to select the most appropriate technique for ecological models. The research generated a chronological profile of relationships between biophysical parameters and chlorophyll level for different seasons. A sensitivity analysis of the models was used to understand how the significance of the biophysical parameters changes as the time difference between the input and predicted value changes. The results show that filtering improves modelling without introducing any noticeable bias. Partial derivative method is found to be the most appropriate technique for sensitivity analysis of ecological feed forward neural networks models. Feed forward neural networks show potential for prediction when modelled on an appropriate time series. Feed forward neural networks also show capability to increase understanding of the ecological environment. In this research, it can be seen that vertical gradient and temperature are important for chlorophyll levels at Point King at time scales from a few hours to a few days. The importance of chlorophyll level at any time to chlorophyll levels in the future reduces as the time difference between them increases.
|
3 |
Quality analysis modelling for development of a process controller in resistance spot welding using neural networks techniquesOba, Pius Nwachukwu 14 November 2006 (has links)
Student Number : 9811923K -
PhD thesis -
School of Mechanical Engineering -
Faculty of Engineering and the Built Environment / Methods are presented for obtaining models used for predicting welded sample resistance and effective weld current (RMS) for desired weld diameter (weld quality) in the resistance spot welding process. These models were used to design predictive controllers for the welding process. A suitable process model forms an important step in the development and design of process controllers for achieving good weld quality with good reproducibility.
Effective current, dynamic resistance and applied electrode force are identified as important input parameters necessary to predict the output weld diameter. These input parameters are used for the process model and design of a predictive controller.
A three parameter empirical model with dependent and independent variables was used for curve fitting the nonlinear halfwave dynamic resistance. The estimates of the parameters were used to develop charts for determining overall resistance of samples for any desired weld diameter. Estimating resistance for samples welded in the machines from which dataset obtained were used to plot the chart yielded accurate results. However using these charts to estimate sample resistance for new and unknown machines yielded high estimation error. To improve the prediction accuracy the same set of data generated from the model were used to train four different neural network types. These were the Generalised Feed Forward (GFF) neural network, Multilayer Perceptron (MLP) network, Radial Basis Function (RBF) and Recurrent neural network (RNN).
Of the four network types trained, the MLP had the least mean square error for training and cross validation of 0.00037 and 0.00039 respectively with linear correlation coefficient in testing of 0.999 and maximum estimation error range from 0.1% to 3%. A prediction accuracy of about 97% to 99.9%. This model was selected for the design and implementation of the controller for predicting overall sample resistance. Using this predicted overall sample resistance, and applied electrode force, a second model was developed for predicting required effective weld current for any desired weld diameter. The prediction accuracy of this model was in the range of 94% to 99%.
The neural network predictive controller was designed using the MLP neural network models. The controller outputs effective current for any desired weld diameter and is observed to track the desired output accurately with same prediction accuracy of the model used which was about 94% to 99%. The controller works by utilizing the neural network output embedded in Microsoft Excel as a digital link library and is able to generate outputs for given inputs on activating the process by the push of a command button.
|
4 |
Realizace rozdělujících nadploch / The decision boundaryGróf, Zoltán January 2012 (has links)
The main aim of this master's thesis is to describe the subject of the implementation of decision boundaries with the help of artificial neural networks. The objective is to present theoretical knowledge concerning this field and on practical examples prove these statements. The work contains basic theoretical description of the field of pattern recognition and the field of feature based representation of objects. A classificator working on the basis of Bayes decision is presented in this part, and other types of classificators are named as well. The work then deals with artificial neural networks in more detail; it contains a theoretical description of their function and their abilities in the creation of decision boundaries in the feature plane. Examples are shown from literature for the use of neural networks in corresponding problems. As part of this work, the program ANN-DeBC was created using Matlab, for the generation of practical results about the usage of feed-forward neural networks for the implementation of decision boundaries. The work contains a detailed description of this program, and the achieved results are presented and analyzed. It is shown as well, how artificial neural networks are creating decision boundaries in the form of geometrical shapes. The effects of the chosen topology of the neural network and the number of training samples on the success of the classification are observed, and the minimal values of these parameters are determined for the successful creation of decision boundaries at the individual examples. Furthermore, it's presented how the neural networks behave at the classification of realistically distributed training samples, and what methods can affect the shape of the created decision boundaries.
|
5 |
Comparison of linear regression and neural networks for stock price predictionKarlsson, Nils January 2021 (has links)
Stock market prediction has been a hot topic lately due to advances in computer technology and economics. One economic theory, called Efficient Market Hypothesis (EMH), states that all known information is already factored into the prices which makes it impossible to predict the stock market. Despite the EMH, many researchers have been successful in predicting the stock market using neural networks on historical data. This thesis investigates stock prediction using both linear regression and neural networks (NN), with a twist. The inputs to the proposed methods are a number of profit predictions calculated with stochastic methods such as generalized autoregressive conditional heteroskedasticity (GARCH) and autoregressive integrated moving average (ARIMA). By contrast the traditional approach was instead to use raw data as inputs. The proposed methods show superior result in yielding profit: at best 1.1% in the Swedish market and 4.6% in the American market. The neural network yielded more profit than the linear regression model, which is reasonable given its ability to find nonlinear patterns. The historical data was used with different window sizes. This gives a good understanding of the window size impact on the prediction performance.
|
6 |
Distinguishing Behavior from Highly Variable Neural Recordings Using Machine LearningSasse, Jonathan Patrick 04 June 2018 (has links)
No description available.
|
7 |
Algebraizace a parametrizace přechodových relací mezi strukturovanými objekty s aplikacemi v oblasti neuronových sítí / Algebraization and Parameterization Transition Relations between Structured Objects with Applications in the Field of Neural NetworksSmetana, Bedřich January 2020 (has links)
The dissertation thesis investigates the modeling of the neural network activity with a focus on a multilayer forward neural network (MLP – Multi Layer Perceptron). In this often used structure of neural networks, time-varying neurons are used, along with an analogy in modeling hyperstructures of linear differential operators. Using a finite lemma and defined hyperoperation, a hyperstructure composed of neurons is defined for a given transient function. There are examined their properties with an emphasis on structures with a layout.
|
8 |
FUTURISTIC AIR COMPRESSOR SYSTEM DESIGN AND OPERATION BY USING ARTIFICIAL INTELLIGENCEBabak Bahrami Asl (5931020) 16 January 2020 (has links)
<div>The compressed air system is widely used throughout the industry. Air compressors are one of the most costly systems to operate in industrial plants in therms of energy consumption. Therefore, it becomes one of the primary target when it comes to electrical energy and load management practices. Load forecasting is the first step in developing energy management systems both on the supply and user side. A comprehensive literature review has been conducted, and there was a need to study if predicting compressed air system’s load is a possibility. </div><div><br></div><div>System’s load profile will be valuable to the industry practitioners as well as related software providers in developing better practice and tools for load management and look-ahead scheduling programs. Feed forward neural networks (FFNN) and long short-term memory (LSTM) techniques have been used to perform 15 minutes ahead prediction. Three cases of different sizes and control methods have been studied. The results proved the possibility of the forecast. In this study two control methods have been developed by using the prediction. The first control method is designed for variable speed driven air compressors. The goal was to decrease the maximum electrical load for the air compressor by using the system's full operational capabilities and the air receiver tank. This goal has been achieved by optimizing the system operation and developing a practical control method. The results can be used to decrease the maximum electrical load consumed by the system as well as assuring the sufficient air for the users during the peak compressed air demand by users. This method can also prevent backup or secondary systems from running during the peak compressed air demand which can result in more energy and demand savings. Load management plays a pivotal role and developing maximum load reduction methods by users can result in more sustainability as well as the cost reduction for developing sustainable energy production sources. The last part of this research is concentrated on reducing the energy consumed by load/unload controlled air compressors. Two novel control methods have been introduced. One method uses the prediction as input, and the other one doesn't require prediction. Both of them resulted in energy consumption reduction by increasing the off period with the same compressed air output or in other words without sacrificing the required compressed air needed for production.</div><div><br></div>
|
Page generated in 0.0526 seconds