• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 318
  • 87
  • 43
  • 13
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • Tagged with
  • 611
  • 611
  • 401
  • 97
  • 62
  • 60
  • 49
  • 46
  • 46
  • 44
  • 36
  • 36
  • 35
  • 34
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Control of physics-based fluid animation using a velocity-matching method

Kim, Yootai, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 88-93).
342

Global stability and feedback control of boundary layer flows

Åkervik, Espen January 2008 (has links)
In this thesis the stability of generic boundary layer flows is studied from a global viewpoint using optimization methods. Global eigenmodes of the incompressible linearized Navier-Stokes equations are computed using the Krylov subspace Arnoldi method. These modes serve as a tool both to study asymptotic stability and as a reduced basis to study transient growth. Transient growth is also studied using adjoint iterations. The knowledge obtained from the stability analysis is used to device systematic feedback control in the Linear Quadratic Gaussian framework. The dynamics is assumed to be described by the linearized Navier-Stokes equations. Actuators and sensors are designed and a Kalman filtering technique is used to reconstruct the unknown flow state from noisy measurements. This reconstructed flow state is used to determine the control feedback which is applied to the Navier-Stokes equations through properly designed actuators. Since the control and estimation gains are obtained through an optimization process, and the Navier-Stokes equations typically forms a very high-dimensional system when discretized there is an interest in reducing the complexity of the equations. A standard method to construct a reduced order model is to perform a Galerkin projection of the full equations onto the subspace spanned by a suitable set of vectors, such as global eigenmodes and balanced truncation modes. / QC 20100924
343

Active control of hydrodynamic slug flow

Inyiama, Fidelis Chidozie 04 1900 (has links)
Multiphase flow is associated with concurrent flow of more than one phase (gas-liquid, liquid-solid, or gas-liquid-solid) in a conduit. The simultaneous flow of these phases in a flow line, may initiate a slug flow in the pipeline. Hydrodynamic slug flow is an alternate or irregular flow with surges of liquid slug and gas pocket. This occurs when the velocity difference between the gas flow rate and liquid flow rate is high enough resulting in an unstable hydrodynamic behaviour usually caused by the Kelvin-Helmholtz instability. Active feedback control technology, though found effective for the control of severe slugs, has not been studied for hydrodynamic slug mitigation in the literature. This work extends active feedback control application for mitigating hydrodynamic slug problem to enhance oil production and recovery. Active feedback Proportional-Integral (PI) control strategy based on measurement of pressure at the riser base as controlled variable with topside choking as manipulated variable was investigated through Olga simulation in this project. A control system that uses the topside choke valve to keep the pressure at the riser base at or below the average pressure in the riser slug cycle has been implemented. This has been found to prevent liquid accumulation or blockage of the flow line. OLGA (olga is a commercial software widely tested and used in oil and gas industries) has been used to assess the capability of active feedback control strategy for hydrodynamic slug control and has been found to give useful results and most interestingly the increase in oil production and recovery. The riser slugging was suppressed and the choke valve opening was improved from 5% to 12.65% using riser base pressure as controlled variable and topside choke valve as the manipulated variable for the manual choking when compared to the automatic choking in a stabilised operation, representing an improvement of 7.65% in the valve opening. Secondly, implementing active control at open-loop condition reduced the riser base pressure from 15.3881bara to 13.4016bara.
344

Automating Radiotherapy: Parameterizations of Sensor Time Delay Compensators and the Separation Principle

Kwok, Wilfred January 2006 (has links)
Motivated by recent research to automate radiotherapy, this thesis looks into feedback control problems where the feedback sensor imposes considerable time delay. The use of an asymptotic estimator is considered as a method to compensate for the time delay. Properties and parameterizations of asymptotic estimators are analyzed. It is shown that if such a delay compensation scheme is adopted, a separation principle holds, which allows for independent design of the feedback controller and the time delay compensator. The radiotherapy problem is used as a case study to show how asymptotic estimators may be designed, exploiting the separation principle. Lastly, the thesis considers multivariable versions of asymptotic estimators.
345

Automating Radiotherapy: Parameterizations of Sensor Time Delay Compensators and the Separation Principle

Kwok, Wilfred January 2006 (has links)
Motivated by recent research to automate radiotherapy, this thesis looks into feedback control problems where the feedback sensor imposes considerable time delay. The use of an asymptotic estimator is considered as a method to compensate for the time delay. Properties and parameterizations of asymptotic estimators are analyzed. It is shown that if such a delay compensation scheme is adopted, a separation principle holds, which allows for independent design of the feedback controller and the time delay compensator. The radiotherapy problem is used as a case study to show how asymptotic estimators may be designed, exploiting the separation principle. Lastly, the thesis considers multivariable versions of asymptotic estimators.
346

Observability and Economic aspects of Fault Detection and Diagnosis Using CUSUM based Multivariate Statistics

Bin Shams, Mohamed January 2010 (has links)
This project focuses on the fault observability problem and its impact on plant performance and profitability. The study has been conducted along two main directions. First, a technique has been developed to detect and diagnose faulty situations that could not be observed by previously reported methods. The technique is demonstrated through a subset of faults typically considered for the Tennessee Eastman Process (TEP); which have been found unobservable in all previous studies. The proposed strategy combines the cumulative sum (CUSUM) of the process measurements with Principal Component Analysis (PCA). The CUSUM is used to enhance faults under conditions of small fault/signal to noise ratio while the use of PCA facilitates the filtering of noise in the presence of highly correlated data. Multivariate indices, namely, T2 and Q statistics based on the cumulative sums of all available measurements were used for observing these faults. The ARLo.c was proposed as a statistical metric to quantify fault observability. Following the faults detection, the problem of fault isolation is treated. It is shown that for the particular faults considered in the TEP problem, the contribution plots are not able to properly isolate the faults under consideration. This motivates the use of the CUSUM based PCA technique previously used for detection, for unambiguously diagnose the faults. The diagnosis scheme is performed by constructing a family of CUSUM based PCA models corresponding to each fault and then testing whether the statistical thresholds related to a particular faulty model is exceeded or not, hence, indicating occurrence or absence of the corresponding fault. Although the CUSUM based techniques were found successful in detecting abnormal situations as well as isolating the faults, long time intervals were required for both detection and diagnosis. The potential economic impact of these resulting delays motivates the second main objective of this project. More specifically, a methodology to quantify the potential economical loss due to unobserved faults when standard statistical monitoring charts are used is developed. Since most of the chemical and petrochemical plants are operated under closed loop scheme, the interaction of the control is also explicitly considered. An optimization problem is formulated to search for the optimal tradeoff between fault observability and closed loop performance. This optimization problem is solved in the frequency domain by using approximate closed loop transfer function models and in the time domain using a simulation based approach. The optimization in the time domain is applied to the TEP to solve for the optimal tuning parameters of the controllers that minimize an economic cost of the process.
347

The use of a feedback system incorporated with a morphological matrix for product/system development

Hargrove, Walter Edward 17 July 2006 (has links)
Critical steps in the design process is the gathering of data, processing the data into a useful form of information (a design concept) which meets specific needs, passing this refined design solution down the path to production, where it is released into the larger environment. With in the designing process there are multiple feedback loops as the solution becomes more refined. Even as it reaches the final end user, other design refinement feedback loops continue as new and improved products or systems. Along with the interdisciplinary teams involved with the product/system development, the more complexity the product or system becomes the more critical the organization of the data becomes. This paper will present and test a concept of a design feedback and feed forward communication tool for product/system design that uses Dr. Walter A. Schaer s Three Functions of an Artifact as the methodological structure for design development. The essence of this design tool is the merging of a new communication system within an existing methodology of organizing complex systems into a morphological matrix, developed by Dr. Walter A. Schaer, based on the Charles Morris s work on semiotics. This communication tool is a new feedback / feed forward mechanism which correspond with the semiotic structure in a morphological matrix to assist the designer develop design solutions. The research will measure the success rate of the tool in the design process, examine of how the designers took advantage of the new tool, and evaluate their perception of its usefulness.
348

Robust H2 and H¡Û Analysis and Design for Linear Discrete-Time Systems with Polytopic Uncertainty

Fang, Shiang-Wei 13 February 2012 (has links)
The thesis considers the problems of designing a dynamic output feedback controller to discrete time systems with polytopic uncertainty so that the closed-loop systems are DR stable with their transfer matrices having H2 norm and H¡Û norm bounded by a prescribed value ru. The formar part of the thesis provides less conservative LMI conditions for H2 and H¡Û analysis and the output feedback control of discrete system than those appeared in the current research. While the latter part of the thesis extend the current research to DR stable with H2 and H¡Û design. Finally, numerical examples are illustrated to show improvement of the propered result.
349

Fixed-Order Optimal Controller Design of an ANC Headphone

Wu, Ting-Yu 29 August 2012 (has links)
This thesis presents a feedback design for an active noise cancellation (ANC) headphone. The designed ANC headphone consists of an analog controller, an audio power amplifier, a headphone speaker, a mini microphone, and a microphone amplifier, which constitute a feedback loop. The controller design follows the method of feedback sensitivity shaping with degree constraint introduced by R. Nagamune and A. Blomqvist in 2005. The advantage of this method is that it eliminates the needs for choosing an analytic weighting function and performing model reduction to yield a lower-order controller, as commonly required in conventional H2/H¡Û optimizations. A fifth-order analog controller for the ANC headphone is designed. The experimental result shows a maximum acoustic noise reduction of 19.7 dB near 200 Hz and an overall noise reduction of more than 10 dB in the control frequency band from 107 Hz to 523 Hz. Moreover, the out-of-band noise amplification is limited to a barely noticeable level of 4.26 dB.
350

Hybrid Geometric Feedback Control of Three-Dimensional Bipedal Robotic Walkers with Knees and Feet

Sinnet, Ryan Wesley 2011 May 1900 (has links)
This thesis poses a feedback control method for obtaining humanlike bipedal walking on a human-inspired hybrid biped model. The end goal was to understand better the fundamental mechanisms that underlie bipedal walking in the hopes that this newfound understanding will facilitate better mechanical and control design for bipedal robots. Bipedal walking is hybrid in nature, characterized by periodic contact between a robot and the environment, i.e., the ground. Dynamic models derived from Lagrangians modeling mechanical systems govern the continuous dynamics while discrete dynamics were handed by an impact model using impulse-like forces and balancing angular momentum. This combination of continuous and discrete dynamics motivated the use of hybrid systems for modeling purposes. The framework of hybrid systems was used to model three-dimensional bipedal walking in a general setup for a robotic model with a hip, knees, and feet with the goal of obtaining stable walking. To achieve three-dimensional walking, functional Routhian reduction was used to decouple the sagittal and coronal dynamics. By doing so, it was possible to achieve walking in the two-dimensional sagittal plane on the three-dimensional model, restricted to operate in the sagittal plane. Imposing this restriction resulted in a reduced-order model, referred to as the sagittally-restricted model. Sagittal control in the form of controlled symmetries and additional control strategies was used to achieve stable walking on the sagittally-restricted model. Functional Routhian reduction was then applied to the full-order system. The sagittal control developed on the reduced-order model was used with reduction to achieve walking in three dimensions in simulation. The control schemes described resulted in walking which was remarkably anthropomorphic in nature. This observation is surprising given the simplistic nature of the controllers used. Moreover, the two-dimensional and three-dimensional dynamics were completely decoupled inasmuch as the dynamic models governing the sagittal motion were equivalent. Additionally, the reduction resulted in swaying in the lateral plane. This motion, which is generally present in human walking, was unplanned and was a side-effect of the decoupling process. Despite the approximate nature of the reduction, the motion was still almost completely decoupled with respect to the sagittal and coronal planes.

Page generated in 0.0532 seconds