• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 17
  • 3
  • 1
  • Tagged with
  • 40
  • 25
  • 25
  • 9
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Adaptive Femtosekunden Quantenkontrolle chemischer Reaktionen in der flüssigen Phase / Adaptive femtosecond quantum control of chemical reactions in the liquid phase

Niklaus, Patrick January 2004 (has links) (PDF)
Ziel der vorliegenden Arbeit war es, die Methode der adaptiven Pulsformung von Femtosekunden Laserpulsen in der flüssigen Phase experimentell zu realisieren. Eine Erweiterung dieser Technik auf die kondensierte Phase stellt einen wichtigen Schritt in Richtung einer breiten Anwendbarkeit zur Steuerung von chemischen Reaktionen dar. Die größere Teilchendichte im Vergleich zur Gasphase ermöglicht zum einen eine Erhöhung der erzielbaren absoluten Produktausbeuten. Andererseits ergibt sich erst dadurch die Möglichkeit, reale chemische Reaktionen, wie bimolekulare Reaktionen, gezielt zu steuern, da Stöße zwischen verschiedenen Molekülen wahrscheinlicher werden. Die Methode der adaptiven Quantenkontrolle ist für die Anwendung in der flüssigen Phase bestens geeignet, da sie eine kohärente Kontrolle von photoinduzierten molekularen Prozessen selbst in komplexen Quantensystemen erlaubt. In dieser experimentellen Umsetzung einer ,,geschlossenen Kontrollschleife'' wird die spektrale Phasenstruktur von fs-Laserpulsen in einem computergesteuerten Pulsformer moduliert. Der resultierende geformte Laserpuls wechselwirkt anschließend mit dem zu untersuchenden molekularen System und steuert aktiv die Entwicklung des erzeugten Wellenpakets auf der Potentialenergiefläche. Eine quantitative Messung der erzeugten Photoprodukte dieser Licht-Materie Wechselwirkung dient als Rückkopplungssignal eines selbstlernenden Computeralgorithmus. Der auf dem Prinzip der Evolutionstheorie arbeitende Algorithmus verbessert nun iterativ die Pulsform bis ein Optimum des gewünschten Reaktionskanals erreicht wird. Das modulierte elektrische Feld des Laserpulses passt sich somit entsprechend der gestellten Kontrollaufgabe automatisch den molekularen Eigenschaften an. Um jedoch die Anwendung dieser Technik auch in der kondensierten Phase zu demonstrieren, mussten Methoden zur Gewinnung eines Rückkopplungssignals gefunden werden. Im Rahmen dieser Arbeit wurden daher Möglichkeiten eines quantitativen Rückkopplungssignals für die adaptive Kontrolle in der flüssigen Phase untersucht, wie die Emissionsspektroskopie und die transiente Absorption im UV/VIS oder infraroten Spektralbereich. In einem ersten Experiment wurde die Emissionsspektroskopie verwendet, um einen Ladungstransferprozess (MLCT) in einem Ru(II)-Komplex ([Ru(dpb)3]2+) mit geformten fs-Laserpulsen zu steuern. Um die dominierende Intensitätsabhängigkeit der Anregung zu eliminieren, wurde die Emissionsausbeute mit dem SHG-Signal eines nichtlinearen Kristalls „normiert“. Diese Auslöschung des intensitätsabhängigen Faktors in beiden Prozessen ermöglichte es, Pulsformen zu finden, die dieses Verhältnis sowohl maximieren als auch minimieren. Ein Ansatz zur Erklärung der experimentellen Ergebnisse konnte mit Hilfe eines störungstheoretischen Modells beschrieben werden. In einem zweiten Experiment wurde erstmals eine photochemische Selektivität zwischen zwei verschiedenen Substanzen in der kondensierten Phase demonstriert. Dabei sollte die jeweilige Zwei-Photonen Anregung des Komplexes [Ru(dpb)3]2+ gegenüber dem Molekül DCM selektiv kontrolliert werden. Wiederum diente die spontane Emission beider Substanzen als Rückkopplungssignal für die Effektivität des Anregungsschritts. Verschiedene Ein-Parameter Kontrollmethoden, wie der Variation der Anregungswellenlänge, der Intensität sowie des linearen Chirps, konnten diese Kontrollaufgabe nicht erfüllen. Jedoch konnte eine Optimierung des Verhältnisses der beiden Emissionsausbeuten mit Hilfe der adaptiven Pulsformung erzielt werden. Das Ergebnis dieses Experiments zeigt, dass photoinduzierte Prozesse in zwei unterschiedlichen molekularen Substanzen trotz der Wechselwirkungen der gelösten Moleküle mit ihrer Lösungsmittelumgebung selektiv und simultan kontrolliert werden können. Das Ziel des dritten Experiments war eine gezielte Steuerung einer komplexeren chemischen Reaktion. Mit Hilfe der adaptiven Pulsformung konnte eine optimale Kontrolle der Photoisomerisierungsreaktion des Moleküls NK88 demonstriert werden. Das dazu benötigte Rückkopplungssignal für den evolutionären Algorithmus wird durch transiente Absorptionsspektroskopie im UV/VIS Spektralbereich bereitgestellt. Eine Untersuchung der Dynamik der Isomerisierungsreaktion mit Hilfe der Pump-Probe Technik erlaubte eine Zuordnung zweier verschiedener Absorptionsbereiche zu den jeweiligen Isomeren. Die Ergebnisse der Optimierung des Verhältnisses der Quantenausbeuten der beiden Isomere zeigten, dass die geformten Laserpulse eine Kontrolle der Effizienz der Photoisomerisierung in der flüssigen Phase ermöglichen. Zusammenfassend kann man sagen, dass im Rahmen dieser Arbeit mit Hilfe der fs-Lasertechnologie und der Technik der adaptiven fs-Quantenkontrolle Experimente durchgeführt wurden, die einen wichtigen Beitrag zu dem neuen Forschungsbereich der Femtochemie darstellen. Die Erweiterung dieser Technik auf die flüssige Phase beschreibt einen ersten Erfolg in Richtung einer neuartigen Chemie. / The goal of this work was to experimentally implement the technique of adaptive femtosecond quantum control of photoinduced reactions in solution. A successful experiment in the liquid phase would represent an important step towards an universal applicability to the control of chemical reactions. The sufficiently high particle densities available in solution allow the processing of macroscopic amounts of chemical substances. Additionally, only in the condensed phase the particle densities are high enough to achieve control for bimolecular synthetic-chemical applications. The technique of adaptive quantum control is most suitable for an application in the liquid phase, as it allows the coherent control of quantum-mechanical processes even in complex systems. In this experimental “closed-loop” setup, the spectral phase structure of fs laser pulses is modulated by a computer-controlled pulse shaper. The resulting shaped laser pulses then interact with the quantum system under consideration, where specific wavepacket dynamics is initiated. The quantitative detection of the generated photoproducts is used as feedback within a learning algorithm. Based on concepts of the evolution theory, this optimization algorithm iteratively improves the pulse-shaper settings until an optimum is reached. Thus the modulated electric field automatically “adapts” to the molecular properties according to the specified control objective. For a successful demonstration of an application of this technology to chemical reactions in the solution phase, suitable feedback signals have to be found. Hence in this work, suitable feedback signals were explored which can be used to probe the result of the solution phase photoreactions reliably and fast. Besides the emission spectroscopy, especially transient absorption techniques in the UV/visible or infrared spectral region turned out to be suitable for quantitatively detecting the quantum yields of the different photoproducts generated by a shaped laser pulse. In a first experiment, emission spectroscopy was employed to investigate the metal-to-ligand charge transfer (MLCT) in a Ru(II) coordination complex ([Ru(dpb)3]2 using adaptive fs pulse shaping. Using the spontaneous emission signal as feedback in the learning procedure, it was possible to control the MLCT excitation process. However, the MLCT excitation occurs via two-photon absorption and is therefore dominantly second-order intensity dependent. This trivial intensity dependence can be removed by using as a new feedback signal the ratio of the molecular response (here: emission) versus a purely optical signal of the same nonlinear order (here: SHG in a thin crystal). The resulting optimized laser pulse shapes were able to both maximize and minimize the ratio emission/SHG, thus proving that adaptive fs quantum control is sensitive to the electronic and vibrational properties of molecules under liquid-phase conditions. The results of this experiment could be understood within a simple perturbation theory model. In a second experiment, chemically selective molecular excitation of two distinct complex molecules (the MLCT-complex [Ru(dpb)3]2+ and the laser dye DCM) in solution was achieved employing shaped fs laser pulses. After two-photon absorption and excited-state dynamics, the spontaneous emission yields are again used as a measure for the excited-state populations in the feedback loop. The experiment was designed to ask if and how coherent light fields can be used to selectively excite one specific molecule (but not another one) within liquid-phase solute/solvent mixtures. Despite the failure of single-parameter approaches (variation of wavelength, intensity or linear chirp), an optimization of the emission yield ratio was successful employing adaptive quantum control. This experiment demonstrates that photoprocesses in two different molecular species can selectively be controlled simultaneously. The goal of a third experiment was the control of a more complex chemical reaction. The reaction type we chose to investigate and to control was the cis-trans isomerization of the molecular system NK88. We chose as feedback signal the ratio of cis-isomers in their ground state after the photoisomerization process to the amount of initially excited trans-isomers (i.e., the relative reaction yield). To determine these quantities, we recorded the transient absorption signal at two different wavelengths. By optimizing the ratio of the relative quantum yields of the two isomers, we demonstrated that the efficiency of the photoisomerization reaction can both be enhanced and reduced. In conclusion, in the context of this work experiments were performed employing the technology of fs laser pulses and adaptive quantum control, which represent an important contribution to the relatively new research field of femtochemistry. The successful transfer of this technique to the liquid phase constitutes a first step towards a new kind of chemistry.
32

Adaptive Femtosekunden-Quantenkontrolle komplexer Moleküle in kondensierter Phase / Asaptive femtosecond quantum control of complex molecules in the condensed phase

Vogt, Gerhard Sebastian January 2006 (has links) (PDF)
Die Bildung verschiedener Isomere durch Änderung der molekularen Struktur spielt eine wichtige Rolle in vielen Gebieten der Physik, Chemie und Biologie. Die Kontrolle dieser Reaktionen ist daher eine sehr interessante Herausforderung und von großer Bedeutung für viele verschiedene Bereiche. Die Entwicklung der letzten Jahre hat gezeigt, dass adaptive Femtosekunden Quantenkontrolle eine ausgesprochen geeignete Methode ist, um chemische Reaktionen zu kontrollieren. Die vorliegende Arbeit behandelt die Beobachtung und Kontrolle von solchen Isomerisierungsreaktionen in biologisch und chemisch relevanten Systemen. Dazu wurde die Reaktionsdynamik eines in Methanol gelösten Modellmoleküls mittlerer Größe mittels transienter Absorption, Fluorescence Upconversion und Anisotropie Spektroskopie untersucht. In Kooperation mit F. Santoro und R. Improta konnte eine detaillierte Beschreibung der ablaufenden Prozesse gefunden werden. In Übereinstimmung mit den von ihnen durchgeführten quantenmechanischen Simulationen hat sich herausgestellt, dass sich die Dynamik auf der ersten angeregten Potentialfläche nach der Anregung auf zwei Zeitskalen abspielt. Nach dem Passieren einer konische Durchschneidung isomerisiert das Molekül entweder zum thermodynamisch stabileren trans Isomer oder zu den instabileren Produktisomeren. An diesem System wurden nun adaptive Femtosekunden Quantenkontrollexperimente durchgeführt, mit dem Ziel den Isomerisierungsprozess zu beeinflussen. Es konnte erfolgreich gezeigt werden, dass die Isomerisierungseffizienz (die relative Menge von Edukt- zu Produktisomeren) sowohl erhöht als auch verringert werden kann. Einzel-Parameter Kontrollmechanismen wie zum Beispiel das Verwenden verschieden gechirpter Anregeimpulse oder unterschiedlicher Anregeimpulsenergien ergaben einen nur geringen Einfluss auf die Isomerisierungseffizienz. Diese Kontrollstudien über den Isomerisierungsprozess haben weiterführende Experimente an dem sehr komplexen biologischen System Retinal innerhalb des Proteins Bakteriorhodopsin motiviert. Die traditionelle Anrege-Abrege-Abfrage Technik wurde zu einem neuen Anrege-geformten-Abrege-Abfrage Konzept erweitert. Dadurch können molekulare Systeme in den Regionen der Potentialenergie-Landschaft kontrolliert werden, in denen der entscheidende Reaktionsschritt stattfinded. Verschiedene theoretische Berechnungen zum Problem der Erhöhung der Isomerisierungseffizienz stellen in Aussicht, dass Anrege-Abrege-Wiederanrege-Abfrage Mechanismen eine Möglichkeit der effektiven Beeinflussung der Reaktionsdynamik eröffnen. Mit der weiterentwickelten Methode können solche Vier-Puls-Techniken realisiert und ihr Einfluss auf den Reaktionsprozess systematisch untersucht werden. Zusätzlich wurde mittels Variation von parametrisierten spektralen Phasenfunktionen, wie verschiedene Ordnungen Chirp, die Dynamik des Abregungsprozesses beleuchtet. Durch Formen des Abregungsimpulses mittels adaptiver Femtosekunden Quantenkontrolle wurden die Informationen aus den systematische Untersuchung vervollständigt. Häufig sind die aus einem adaptiven Femtosekunden Quantenkontrollexperiment erhaltenen optimalen Laserimpulsformen sehr kompliziert. Besonders Anrege-Abrege Szenarien spielen oft eine wichtige Rolle in den ermittelten optimalen Lösungen und sollten daher gesondert untersucht werden. Dazu können verschiedenfarbige Doppelimpulse verwendet werden, bei denen man sowohl den Pulsabstand als auch die relative Amplitude oder die Phasendifferenz der beiden Einzellpulse systematisch ändert. Diese weiterentwickelte Methode wurde mittels einfacher Experimente charakterisiert. In einem weiteren Schritt wurde ein Aufbau entworfen, der Doppelimpulse erfordert, um ein maximale Ausbeute von Licht bei einer Wellenlänge von 266~nm zu erhalten. Mit dem Kontrollziel der maximalen dritten Harmonischen Ausbeute wurden adaptive Femtosekunden Quantenkontrollexperimente durchgeführt. Durch zusätzliche Messungen von verschiedenfarbigen Doppelimpuls-Kontrolllandschaften konnte die optimale Pulsform ermittelt und bestätigt werden. In einem abschließenden Experiment wurde die Abhängigkeit der Anregeeffizienz eines komplexen, in Methanol gelösten Farbstoffmoleküls auf verschiedene Impulsformen untersucht. Aus den Ergebnissen wird ersichtlich, dass sehr unterschiedliche Impulsformen ein Kontrollziel ähnlich gut erfüllen können. Verschiedenfarbige Doppelimpuls-Kontrolllandschaften können einen Einblick in Kontrollmechanismen von adaptiv gefundenen Impulsformen ermöglichen und Informationen über die Reaktionsdynamik liefern. Mittels der angewandten und weiterentwickelten Methoden mehr über verschiedene Prozesse unterschiedlicher Molekülklassen zu lernen ist ein viel versprechendes und realistisches Ziel für die Zukunft. Die präsentierten Experimente zeigen, dass es möglich ist, geometrische Änderungsreaktionen in chemisch und biologisch relevanten Systemen durch adaptive Femtosekunden Quantenkontrolle zu steuern. / The formation of different isomers by rearrangement of the molecular structure plays a substantial role in many areas in physics, chemistry and biology. The control of such reactions is therefore a very appealing task. Directly connected to the control is the observation and characterization of the dynamics. Within the last years, adaptive femtosecond quantum control has proven to be a very powerful tool to control chemical reactions. Prototype experiments based on simple reactions already have shown that the concept of femtosecond quantum control is also applicable for molecules in a condensed environment. This thesis deals with the observation and control of such isomerization reactions in chemically and biologically relevant systems. Therefore the reaction dynamics of a medium size prototype molecule of the family of the cyanine dyes in solution were investigated by transient absorption spectroscopy, by fluorescence upconversion and by anisotropy spectroscopy. In cooperation with F. Santoro and R. Improta a detailed and reliable description of the overall kinetics was achieved, evidencing a two-timescale dynamics on the first excited potential energy surface after excitation. After decaying through a conical intersection, the molecule isomerizes either to the thermodynamically most stable trans isomer or to two less stable product isomers. Adaptive femtosecond quantum control experiments were performed on this system with the objective to control the isomerization process. Both enhancement as well as reduction of the isomerization efficiency, i.e the relative yield of the educt to the product isomers, were achieved. Single parameter control mechanisms such as applying different chirps or varying the excitation laser pulse energy failed to change the ratio of the photoproducts. These control studies on the isomerization process of a medium size molecule in the condensed phase motivated experiments on the very complex biological system of retinal embedded in bacteriorhodopsin. The traditional pump-dump-probe method was extended to a new pump-shaped-dump-probe scheme to control molecular systems in those regions of the potential-energy landscape where the decisive reaction step occurs. Different theoretical simulations on the enhancement of the isomerization yield predict that pump-dump-repump-probe mechanisms can control the reaction dynamics. Using the novel scheme, such a four-pulse technique with a double-pulse-like shaped dump pulse can be realized and its impact on the reaction process can be systematically investigated. With further parameterized scans of specialized phase functions, such as different orders of chirp, the dynamics of the dumping process has been illuminated. Finally by adaptively shaping the dump pulse the information from the systematic scan has been refined and completed. Very often, adaptively obtained optimal laser pulse shapes are very complicated and can contain structures, that contribute to a certain control mechanism to different degrees. Consequently, it can be difficult to identify the control mechanism of such optimal pulses. Especially pump-dump scenarios often play an important role in the acquired optimal solution and therefore deserve to be investigated separately. For this, colored double pulses are employed and both the pulse separation and the relative amplitude or phase difference of the two subpulses are systematically scanned. This further developed method was first characterized by simple experiments. Then, a setup forcing double-pulses to obtain the highest third harmonic yield was designed. The control objective of maximizing the third harmonic yield has the advantage that the optimal pulse shape can be calculated and intuitively understood. Adaptive femtosecond quantum control experiments were performed with this control objective. With additional measurements of colored double-pulse control landscapes the control mechanism of the adaptively obtained optimal pulse shape can be extracted and confirmed. In a further experiment, the dependence of the excitation efficiency of a complex dye molecule dissolved in methanol on selected pulse shapes probed by transient absorption spectroscopy was studied. The results show that very different pulse shapes are equally adequate to fulfill the control objective. Colored double pulse scans thus can give an insight into the control mechanism of adaptively obtained pulse shapes and provide information about reaction dynamics. Investigations on various processes of different molecular classes using the methods developed and applied here are a promising and realistic goal for the near future. The presented experiments demonstrate a successful manipulation of geometrical rearrangement reactions in chemically and biologically relevant systems by adaptive femtosecond quantum control.
33

Ultrafast laser induced phenomena in solids studied by time resolved interferometry

Temnov, Vasily V. Unknown Date (has links) (PDF)
Essen, University Diss., 2004--Duisburg.
34

Atomare und molekulare Fragmentationsdynamik in intensiven ultrakurzen Lichtpulsen

Trump, Christoph Ernst. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Berlin.
35

Optimization of femtosecond laser plasma Ka sources

Reich, Christian. Unknown Date (has links) (PDF)
University, Diss., 2003--Jena.
36

Ultrafast laser induced phenomena in solids studied by time resolved interferometry

Temnov, Vasily V. January 2004 (has links)
Duisburg, Essen, Univ. Diss., 2004
37

Electron correlation in multiple ionization of atoms and molecules by intense ultra-short laser pulses

Eremina, Ekaterina. Unknown Date (has links) (PDF)
Techn. University, Diss., 2005--Berlin.
38

Erzeugung und Charakterisierung von abstimmbaren VUV- und MIR-Femtosekunden-Lichtimpulsen mittels Drei-Photonen parametrischer Prozesse in nichtlinearen Kristallen

Rotermund, Fabian. Unknown Date (has links)
Techn. Universiẗat, Diss., 2000--Berlin.
39

Zeitaufgelöste Analyse der Wechselwirkung von ultrakurz- gepulster Laserstrahlung mit Dielektrika

Horn, Alexander. January 2003 (has links) (PDF)
Techn. Hochsch., Diss., 2003--Aachen.
40

Röntgenbeugung auf Subpikosekunden Zeitskalen

Morak, Andreas. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Jena.

Page generated in 0.0629 seconds