Spelling suggestions: "subject:"fenômeno dde transporte"" "subject:"fenômeno dee transporte""
1 |
Barreiras de transporte em plasmas e mapas simpléticos não-twist / Transport barrier in plasmas and non-twist symplectic mapsFonseca, Júlio César David da 23 August 2011 (has links)
Consideramos um modelo hamiltoniano do movimento eletrostático de deriva para investigar o trasnporte caótico de partículas na borda de plasmas confinados em Tokamaks. Este modelo leva em conta a turbulência eletrostática de deriva, responsável pelo transporte anômalo. O modelo Hamiltoniano provê as equações de movimento, que são dependentes de uma função para o potencial elétrico. Esta função é caracterizada por um potencial de equilíbrio mais um termo correspondente às ondas de deriva. Assumimos três diferentes perfis radiais para o campo elétrico radial de equilíbrio: um linear e outros dois não-monotônicos com extremos suaves. Para estes perfis, mostramos que o modelo pode ser reduzido a três mapas simpléticos bidimensionais e não integráveis: o mapa padrão, o mapa padrão não twist e um mapa modelo não twist introduzido neste trabalho. O mapa padrão não twist e o mapa modelo violam a condição twist, fundamental para os teoremas KAM e de Birkhoff. Para estes mapas não twist, estudaremos numericamente barreiras de transporte criadas próximas às curvas shearless. Mostramos que, para o mapa modelo, a barreira de transporte é robusta, isto é, persiste em um amplo intervalo de variação de um de seus parâmetros. Dentro da região da barreira, descrevemos o nascimento de cadeias de ilhas com períodos par e ímpar devido à variação do parâmetro de controle. Analisamos estes dois cenários calculando os números de rotação dentro da barreira e identificando as bifurcações que criam as ilhas. Finalmente, conjecturamos que todas as ilhas dentro da região da barreira são criadas por estes dois cenários. Além disso, se o número de rotação da curva shearless atinge um número racional, as cadeias de ilhas são criadas de acordo com os cenários descritos. / We consider a hamiltonian model of the electrostatic drift motion to investigate chaotic particle transport in the Tokamak plasma edge. This model takes into account the electrostatic drift turbulence, which is responsible for the anomalous transport. The Hamiltonian model provides the basic equations of motion, which are dependent on the form of an electric potential function. This function is characterized by the equilibrium potential and the term corresponding to the drift waves. We assume three diferent radial profiles for the equilibrium radial electric field: one linear and the other two non-monotonic with a smooth extremum. For these profiles, we show that the model can be reduced to three symplectic maps: the standard map, the nontwist standard map, and a nontwist model map introduced in this work. The nontwist standard map and the model map violate the twist condition, a property of fundamental importance for the applicability of the KAM and Birkhoff theorems. For these nontwist maps, we study numerically the transport barriers created around their shearless curves. We show for the model map that the transport barrier is robust,i.e., remains for a wide range of one of its parameters. Inside the barrier region, we describe the birth of island chains with even or odd periods due to the control parameter variation. We analyse these two scenarios by calculating the winding numbers inside the barrier region and identifying the bifurcations that create the islands. Finally, we conjecture that all the island chains inside the barrier are created by these two scenarios. Moreover, if the winding number of the shearless curve reachs a rational number, the island chains are created according to the described scenarios.
|
2 |
Análise da eficiência energética da secagem de pastas em leito de jorro.Fernandes, Conceição Flores 10 March 2005 (has links)
Made available in DSpace on 2016-06-02T19:56:51Z (GMT). No. of bitstreams: 1
DissCFF.pdf: 733076 bytes, checksum: 0c236fab015f2a733e1fe8bfdb929ba2 (MD5)
Previous issue date: 2005-03-10 / Financiadora de Estudos e Projetos / One of the most intensive uses of energy in industry is due to drying. After
drying, the dry material becomes easy to transport, to storage, and to conserve for
a long period of time. In this context, the aim of this work was to analyze the
energy efficiency of a Spouted Bed in the drying of pastes in order to establish
optimal conditions of operation and to propose modifications in the process to
improve its energy efficiency. To issue these analyses, a mathematical model was
derived which includes mass balance equations and energy balance equations for
both the dryer and the inlet gas heater. The drying rate was quantified by the
difference between the content of water in the feed flow rate of paste and the
content of water in the exit dry solid. The mathematical model was implemented
using MatLab programming language. The results obtained in both steady and
dynamic simulations were compared with experimental data, showing that the
model represents the process quite well for the operational conditions considered.
Simulations were accomplished to analyze the behavior of the energy efficiency
from disturbances in the feed flow rate of paste ( e F ), in the feed flow rate of gas
( g V ), composed by air and vapor of water, and in the power supplied to the inlet
gas heater ( Pot ). Pinch Analysis was also performed to the system, which
suggested some modifications in the process in order to improve its energy
efficiency. The energy efficiency was quantified by the ratio between the
necessary energy to evaporate the water and the sum of the necessary energy to
blow and heat the inlet gas. The simulations showed that the energy efficiency so
far used is improved by increasing the feed flow rate of paste, by decreasing both
the power supplied to the inlet gas heater and the power supplied to the blower. It
was observed that the increase in the temperature of the feed flow rate of paste
showed a small effect in the energy efficiency. / A secagem é uma das operações que mais consomem energia na indústria. Sua
importância está na facilidade de transporte, armazenamento e conservação do
material seco. Neste contexto, o objetivo deste trabalho é analisar a eficiência
energética da secagem de pastas em Leito de jorro, estabelecer condições ótimas
de operação e propor modificações no processo a fim de melhorar sua eficiência
energética. O modelo do processo de secagem analisado é composto por balanços
de energia no aquecedor e no leito de jorro, balanços de massa por componente e
global nas fases sólida e gasosa. A taxa de secagem foi quantificada pela diferença
entre a água presente na pasta e a água presente no sólido. O modelo foi
implementado em linguagem MatLab. Os resultados obtidos na simulação em
estado estacionário e em regime dinâmico foram comparados com dados
experimentais indicando que o modelo representa bem o processo. Foram
realizadas simulações para analisar o comportamento da eficiência energética
frente a variações na vazão mássica de alimentação de pasta (Fe), na vazão
volumétrica de gás (Vg) composto por ar e vapor de água e na potência de
aquecimento do aquecedor (Pot). Com o intuito de propor modificações no
processo a Análise Pinch foi aplicada ao sistema sugerindo alguns artifícios para
melhorar a eficiência energética. A eficiência energética foi quantificada pela
razão entre a energia necessária para evaporar a água e a soma das energias
necessárias para movimentar e aquecer o ar As simulações mostraram que a
eficiência energética é favorecida pelo aumento na vazão de pasta, pela
diminuição nas potências de aquecimento e do soprador. Observou-se também que
o aumento na temperatura de entrada da pasta não tem influência sobre a
eficiência energética.
|
3 |
Barreiras de transporte em plasmas e mapas simpléticos não-twist / Transport barrier in plasmas and non-twist symplectic mapsJúlio César David da Fonseca 23 August 2011 (has links)
Consideramos um modelo hamiltoniano do movimento eletrostático de deriva para investigar o trasnporte caótico de partículas na borda de plasmas confinados em Tokamaks. Este modelo leva em conta a turbulência eletrostática de deriva, responsável pelo transporte anômalo. O modelo Hamiltoniano provê as equações de movimento, que são dependentes de uma função para o potencial elétrico. Esta função é caracterizada por um potencial de equilíbrio mais um termo correspondente às ondas de deriva. Assumimos três diferentes perfis radiais para o campo elétrico radial de equilíbrio: um linear e outros dois não-monotônicos com extremos suaves. Para estes perfis, mostramos que o modelo pode ser reduzido a três mapas simpléticos bidimensionais e não integráveis: o mapa padrão, o mapa padrão não twist e um mapa modelo não twist introduzido neste trabalho. O mapa padrão não twist e o mapa modelo violam a condição twist, fundamental para os teoremas KAM e de Birkhoff. Para estes mapas não twist, estudaremos numericamente barreiras de transporte criadas próximas às curvas shearless. Mostramos que, para o mapa modelo, a barreira de transporte é robusta, isto é, persiste em um amplo intervalo de variação de um de seus parâmetros. Dentro da região da barreira, descrevemos o nascimento de cadeias de ilhas com períodos par e ímpar devido à variação do parâmetro de controle. Analisamos estes dois cenários calculando os números de rotação dentro da barreira e identificando as bifurcações que criam as ilhas. Finalmente, conjecturamos que todas as ilhas dentro da região da barreira são criadas por estes dois cenários. Além disso, se o número de rotação da curva shearless atinge um número racional, as cadeias de ilhas são criadas de acordo com os cenários descritos. / We consider a hamiltonian model of the electrostatic drift motion to investigate chaotic particle transport in the Tokamak plasma edge. This model takes into account the electrostatic drift turbulence, which is responsible for the anomalous transport. The Hamiltonian model provides the basic equations of motion, which are dependent on the form of an electric potential function. This function is characterized by the equilibrium potential and the term corresponding to the drift waves. We assume three diferent radial profiles for the equilibrium radial electric field: one linear and the other two non-monotonic with a smooth extremum. For these profiles, we show that the model can be reduced to three symplectic maps: the standard map, the nontwist standard map, and a nontwist model map introduced in this work. The nontwist standard map and the model map violate the twist condition, a property of fundamental importance for the applicability of the KAM and Birkhoff theorems. For these nontwist maps, we study numerically the transport barriers created around their shearless curves. We show for the model map that the transport barrier is robust,i.e., remains for a wide range of one of its parameters. Inside the barrier region, we describe the birth of island chains with even or odd periods due to the control parameter variation. We analyse these two scenarios by calculating the winding numbers inside the barrier region and identifying the bifurcations that create the islands. Finally, we conjecture that all the island chains inside the barrier are created by these two scenarios. Moreover, if the winding number of the shearless curve reachs a rational number, the island chains are created according to the described scenarios.
|
4 |
Aproximação tempo de relaxação: Modelos alternativos em teoria cinética clássica / Relaxation time approach: alternative models in classical kinectic theoryOliveira, Diego Sales de 07 June 2013 (has links)
As possíveis soluções da equação integro-diferencial de Boltzmann constituem uma importante ferramenta para o estudo de gases e plasmas. No entanto, suas soluções analíticas são difíceis de serem encontradas. Uma abordagem bastante utilizada na literatura para obter soluções aproximadas da equação de Boltzmann é através de hipóteses que simplificam a forma da integral de colisão. Nesta dissertação, discutimos dois modelos colisionais alternativos que generalizam o método originalmente proposto por Bhatnagar, Gross e Krook, usualmente referido na literatura como aproximação BGK. O primeiro deles é um modelo de relaxação de segunda ordem, no qual introduzimos um segundo tempo de relaxação, 2 , relacionado com efeitos não lineares. O segundo modelo é baseado em outra generalização do modelo BGK obtida através de uma lei de potência parametrizada por um índice . No limite 1 o modelo BGK padrão é recuperado. As duas aproximações são fisicamente interpretadas. Além disso, para ilustrar nossos resultados com algumas aplicações mais quantitativas, obtemos as expressões analíticas para diversos coeficientes de transporte, a saber: a condutividade térmica (), a viscosidade de cisalhamento () e a condutividade elétrica (). Em particular, no modelo de relaxação de segunda ordem, as correções dependem da razão 1/2, onde 1 é a escala de tempo característica do modelo BGK padrão e 2 a nova escala de tempo associada aos efeitos não lineares. Finalmente, como um resultado geral, mostramos também que todas as correções nos coeficientes de transporte dependem numa certa potência do chamado número de Knudsen. / The possible solutions of the integro-diferential Boltzmann equation constitute an important tool for studying gases and plasmas. |However, its analytical solutions are hardly derived. An approach often adopted in the literature for obtaining approximate solutions of the Boltzmann equation is to consider some simplifying hypothesis on the collisional term. In this Dissertation, we discuss two diferent alternative collisional models which generalize the method originally proposed by Bhatnagar, Gross e Krook, and usually referred to as BGK approximation. The first one is a second order relaxation model in which a second relaxation time, 2, related with the nonlinear efects, is introduced. The second one is based on a diferent generalization of the BGK model which is obtained through a power law parameterized by a index . In the limit 1, the BGK model is recovered. Both approximations are physically interpreted. Further, in order to illustrate our results with some more quantitative applications, we derive the analytical expressions for several transport coefficients, among them the thermal conductivity (), the shear viscosity () and the electric conductivity (). In particular, for the second order relaxation model, we find that the corrections depend on the ratio 1/2 where 1 is the characteristic time scale of the BGK model and 2 describe the nonlinear efects. Finally, as a general result, it is also shown that all the corrections on the transport coefficients depend on a given power of the so-called Knudsen number.
|
5 |
Aproximação tempo de relaxação: Modelos alternativos em teoria cinética clássica / Relaxation time approach: alternative models in classical kinectic theoryDiego Sales de Oliveira 07 June 2013 (has links)
As possíveis soluções da equação integro-diferencial de Boltzmann constituem uma importante ferramenta para o estudo de gases e plasmas. No entanto, suas soluções analíticas são difíceis de serem encontradas. Uma abordagem bastante utilizada na literatura para obter soluções aproximadas da equação de Boltzmann é através de hipóteses que simplificam a forma da integral de colisão. Nesta dissertação, discutimos dois modelos colisionais alternativos que generalizam o método originalmente proposto por Bhatnagar, Gross e Krook, usualmente referido na literatura como aproximação BGK. O primeiro deles é um modelo de relaxação de segunda ordem, no qual introduzimos um segundo tempo de relaxação, 2 , relacionado com efeitos não lineares. O segundo modelo é baseado em outra generalização do modelo BGK obtida através de uma lei de potência parametrizada por um índice . No limite 1 o modelo BGK padrão é recuperado. As duas aproximações são fisicamente interpretadas. Além disso, para ilustrar nossos resultados com algumas aplicações mais quantitativas, obtemos as expressões analíticas para diversos coeficientes de transporte, a saber: a condutividade térmica (), a viscosidade de cisalhamento () e a condutividade elétrica (). Em particular, no modelo de relaxação de segunda ordem, as correções dependem da razão 1/2, onde 1 é a escala de tempo característica do modelo BGK padrão e 2 a nova escala de tempo associada aos efeitos não lineares. Finalmente, como um resultado geral, mostramos também que todas as correções nos coeficientes de transporte dependem numa certa potência do chamado número de Knudsen. / The possible solutions of the integro-diferential Boltzmann equation constitute an important tool for studying gases and plasmas. |However, its analytical solutions are hardly derived. An approach often adopted in the literature for obtaining approximate solutions of the Boltzmann equation is to consider some simplifying hypothesis on the collisional term. In this Dissertation, we discuss two diferent alternative collisional models which generalize the method originally proposed by Bhatnagar, Gross e Krook, and usually referred to as BGK approximation. The first one is a second order relaxation model in which a second relaxation time, 2, related with the nonlinear efects, is introduced. The second one is based on a diferent generalization of the BGK model which is obtained through a power law parameterized by a index . In the limit 1, the BGK model is recovered. Both approximations are physically interpreted. Further, in order to illustrate our results with some more quantitative applications, we derive the analytical expressions for several transport coefficients, among them the thermal conductivity (), the shear viscosity () and the electric conductivity (). In particular, for the second order relaxation model, we find that the corrections depend on the ratio 1/2 where 1 is the characteristic time scale of the BGK model and 2 describe the nonlinear efects. Finally, as a general result, it is also shown that all the corrections on the transport coefficients depend on a given power of the so-called Knudsen number.
|
6 |
Modelos de mapas simpléticos para o movimento de deriva elétrica com efeitos de raio de Larmor finito / Area-Preserving Maps Models of the Electric Drift Motion with Finite Larmor Radius EffectsFonseca, Júlio César David da 10 May 2016 (has links)
Mapas simpléticos têm sido amplamente utilizados para modelar o transporte caótico em plasmas e fluidos. Neste trabalho, propomos três tipos de mapas simpléticos que descrevem o movimento de deriva elétrica em plasmas magnetizados. Efeitos de raio de Larmor finito são incluídos em cada um dos mapas. No limite do raio de Larmor tendendo a zero, o mapa com frequência monotônica se reduz ao mapa de Chirikov-Taylor, e, nos casos com frequência não-monotônica, os mapas se reduzem ao mapa padrão não-twist. Mostramos como o raio de Larmor finito pode levar à supressão de caos, modificar a topologia do espaço de fases e a robustez de barreiras de transporte. Um método baseado na contagem dos tempos de recorrência é proposto para analisar a influência do raio de Larmor sobre os parâmetros críticos que definem a quebra de barreiras de transporte. Também estudamos um modelo para um sistema de partículas onde a deriva elétrica é descrita pelo mapa de frequência monotônica, e o raio de Larmor é uma variável aleatória que assume valores específicos para cada partícula do sistema. A função densidade de probabilidade para o raio de Larmor é obtida a partir da distribuição de Maxwell-Boltzmann, que caracteriza plasmas na condição de equilíbrio térmico. Um importante parâmetro neste modelo é a variável aleatória gama, definida pelo valor da função de Bessel de ordem zero avaliada no raio de Larmor da partícula. Resultados analíticos e numéricos descrevendo as principais propriedades estatísticas do parâmetro gama são apresentados. Tais resultados são então aplicados no estudo de duas medidas de transporte: a taxa de escape e a taxa de aprisionamento por ilhas de período um. / Area-preserving maps have been extensively used to model chaotic transport in plasmas and fluids. In this work we propose three types of maps describing electric drift motion in magnetized plasmas. Finite Larmor radius effects are included in all maps. In the limit of zero Larmor radius, the monotonic frequency map reduces to the Chirikov-Taylor map, and, in cases with non-monotonic frequencies, the maps reduce to the standard nontwist map. We show how the finite Larmor radius can lead to chaos suppression, modify the phase space topology and the robustness of transport barriers. A method based on counting the number of recurrence times is used to quantify the dependence on the Larmor radius of the threshold for the breakup of transport barriers. We also study a model for a system of particles where the electric drift is described by the monotonic frequency map, and the Larmor radius is a random variable that takes a specific value for each particle of the system. The Larmor radius\' probability density function is obtained from the Maxwell-Boltzmann distribution, which characterizes plasmas in thermal equilibrium. An important parameter in this model is the random variable gamma, defined by the zero-order Bessel function evaluated at the Larmor radius\'particle. We show analytical and numerical computations related to the statistics of gamma. The set of analytical results obtained here is then applied to the study of two numerical transport measures: the escape rate and the rate of trapping by period-one islands.
|
7 |
Modelos de mapas simpléticos para o movimento de deriva elétrica com efeitos de raio de Larmor finito / Area-Preserving Maps Models of the Electric Drift Motion with Finite Larmor Radius EffectsJúlio César David da Fonseca 10 May 2016 (has links)
Mapas simpléticos têm sido amplamente utilizados para modelar o transporte caótico em plasmas e fluidos. Neste trabalho, propomos três tipos de mapas simpléticos que descrevem o movimento de deriva elétrica em plasmas magnetizados. Efeitos de raio de Larmor finito são incluídos em cada um dos mapas. No limite do raio de Larmor tendendo a zero, o mapa com frequência monotônica se reduz ao mapa de Chirikov-Taylor, e, nos casos com frequência não-monotônica, os mapas se reduzem ao mapa padrão não-twist. Mostramos como o raio de Larmor finito pode levar à supressão de caos, modificar a topologia do espaço de fases e a robustez de barreiras de transporte. Um método baseado na contagem dos tempos de recorrência é proposto para analisar a influência do raio de Larmor sobre os parâmetros críticos que definem a quebra de barreiras de transporte. Também estudamos um modelo para um sistema de partículas onde a deriva elétrica é descrita pelo mapa de frequência monotônica, e o raio de Larmor é uma variável aleatória que assume valores específicos para cada partícula do sistema. A função densidade de probabilidade para o raio de Larmor é obtida a partir da distribuição de Maxwell-Boltzmann, que caracteriza plasmas na condição de equilíbrio térmico. Um importante parâmetro neste modelo é a variável aleatória gama, definida pelo valor da função de Bessel de ordem zero avaliada no raio de Larmor da partícula. Resultados analíticos e numéricos descrevendo as principais propriedades estatísticas do parâmetro gama são apresentados. Tais resultados são então aplicados no estudo de duas medidas de transporte: a taxa de escape e a taxa de aprisionamento por ilhas de período um. / Area-preserving maps have been extensively used to model chaotic transport in plasmas and fluids. In this work we propose three types of maps describing electric drift motion in magnetized plasmas. Finite Larmor radius effects are included in all maps. In the limit of zero Larmor radius, the monotonic frequency map reduces to the Chirikov-Taylor map, and, in cases with non-monotonic frequencies, the maps reduce to the standard nontwist map. We show how the finite Larmor radius can lead to chaos suppression, modify the phase space topology and the robustness of transport barriers. A method based on counting the number of recurrence times is used to quantify the dependence on the Larmor radius of the threshold for the breakup of transport barriers. We also study a model for a system of particles where the electric drift is described by the monotonic frequency map, and the Larmor radius is a random variable that takes a specific value for each particle of the system. The Larmor radius\' probability density function is obtained from the Maxwell-Boltzmann distribution, which characterizes plasmas in thermal equilibrium. An important parameter in this model is the random variable gamma, defined by the zero-order Bessel function evaluated at the Larmor radius\'particle. We show analytical and numerical computations related to the statistics of gamma. The set of analytical results obtained here is then applied to the study of two numerical transport measures: the escape rate and the rate of trapping by period-one islands.
|
Page generated in 0.1069 seconds