• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fundamental Study Of Mechanical And Chemical Degradation Mechanisms Of Pem Fuel Cell Membranes

Yoon, Wonseok 01 January 2010 (has links)
One of the important factors determining the lifetime of polymer electrolyte membrane fuel cells (PEMFCs) is membrane degradation and failure. The lack of effective mitigation methods is largely due to the currently very limited understanding of the underlying mechanisms for mechanical and chemical degradations of fuel cell membranes. In order to understand degradation of membranes in fuel cells, two different experimental approaches were developed; one is fuel cell testing under open circuit voltage (OCV) with bi-layer configuration of the membrane electrode assemblies (MEAs) and the other is a modified gas phase Fenton's test. Accelerated degradation tests for polymer electrolyte membrane (PEM) fuel cells are frequently conducted under open circuit voltage (OCV) conditions at low relative humidity (RH) and high temperature. With the bi-layer MEA technique, it was found that membrane degradation is highly localized across thickness direction of the membrane and qualitatively correlated with location of platinum (Pt) band through mechanical testing, Infrared (IR) spectroscopy, fluoride emission, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy dispersive spectroscopy (EDS) measurement. One of the critical experimental observations is that mechanical behavior of membranes subjected to degradation via Fenton's reaction exhibit completely different behavior with that of membranes from the OCV testing. This result led us to believe that other critical factors such as mechanical stress may affect on membrane degradation and therefore, a modified gas phase Fenton's test setup was developed to test the hypothesis. Interestingly, the results showed that mechanical stress directly accelerates the degradation rate of ionomer membranes, implying that the rate constant for the degradation reaction is a function of mechanical stress in addition to commonly known factors such as temperature and humidity. Membrane degradation induced by mechanical stress necessitates the prediction of the stress distribution in the membrane under various conditions. One of research focuses was on the developing micromechanism-inspired continuum model for ionomer membranes. The model is the basis for stress analysis, and is based on a hyperelastic model with reptation-inspired viscous flow rule and multiplicative decomposition of viscoelastic and plastic deformation gradient. Finally, evaluation of the membrane degradation requires a fuel cell model since the degradation occurs under fuel cell operating conditions. The fuel cell model included structural mechanics models and multiphysics models which represents other phenomena such as gas and water transport, charge conservation, electrochemical reactions, and energy conservation. The combined model was developed to investigate the compression effect on fuel cell performance and membrane stress distribution.
2

Morphological and Mechanical Properties of Dispersion-Cast and Extruded Nafion Membranes Subjected to Thermal and Chemical Treatments

Osborn, Shawn James 06 May 2009 (has links)
The focus of this research project was to investigate morphological and mechanical properties of both extruded and dispersion-cast Nafion® membranes. The project can be divided into three primary objectives; obtaining a fundamental understanding of the glass transition temperature of Nafion®, determining the effect of thermal annealing treatments on the morphology and mechanical properties of dispersion-cast Nafion®, and examination of dispersion-cast Nafion® subjected to an ex-situ, Fenton's chemical degradation test. Nafion®, a perfluorosulfonate ionomer, is considered a commercially successful semi-crystalline ionomer with primary applications in chlor-alkali cells and proton exchange membrane fuel cells. With the aid of dynamic mechanical analysis (DMA) and dielectric spectroscopy (DS), we were able to provide definitive evidence for a genuine glass transition in Nafion®. DMA of Nafion® samples that were partially neutralized with tetrabutylammonium counterions showed a strong compositional dependence suggesting that the β-relaxations of H+-form Nafion® and the neutralized ionomers have the same molecular origin with respect to backbone segmental motions. Building upon our previous studies of the molecular and morphological origins of the dynamic mechanical relaxations of Nafion® neutralized with a series of organic ions, the glass transition temperature of H+-form Nafion® is now confirmed to be the weak β-relaxation centered at -20 °C. Dielectric spectra also showed this transition from the perspective of dipole relaxation. The signature of cooperative long range segmental motions in dielectric spectra was seen here, as with other polymers, mainly through the excellent agreement of the β-relaxation time-temperature dependence with the Vogel-Fulcher-Tammann equation. We have also discovered that new dispersion-cast H+ form Nafion® membranes are susceptible to disintegration/dissolution when subjected to boiling methanol. In this work, we have achieved significant decreases in the percent solubility of H+-form Nafion® by either thermally annealing above 175 °C or solution-processing at 180 °C using a high boiling point solvent. Small Angle X ray Scattering (SAXS) displayed a change in the morphology of H+ form membranes with increasing annealing temperature by a shift in the crystalline scattering peak (q â 0.05 Ã 1) to lower q values. Counterion exchange of Nafion® from H+ to Na+ form had no influence on the membrane's susceptibility to disintegration in boiling methanol. In order to achieve mechanical stability in boiling methanol, Na+ form membranes had to be annealed at 275 °C for at least fifteen minutes. The SAXS data of annealed Na+ form membranes showed a dramatic decrease in crystalline order with annealing temperature, ultimately leading to the disappearance of the crystalline scattering peak after fifteen minutes at 275 °C. The onset of methanol stability with the melting of Nafion® crystallites suggests that chain entanglement is an important parameter in obtaining solvent stability. With respect to chemical stability, we performed studies aimed at examining the effects of Fenton's Reagent on the resistance to radical attack of new generation, dispersion-cast Nafion®. Changes in the 19F solid-state NMR spectra of dispersion-cast Nafion® before and after chemical degradation via Fenton's Reagent predicts a rather random attack by ·OH and ·OOH radicals. Several membranes were also thermally annealed between 100-250 °C in an attempt to correlate crystallinity with chemical degradation kinetics of Nafion® via Fenton's Reagent. The results indicate that the effect of counterion exchange into the Na+ form was minimal, but the degree of thermal degradation had a tremendous effect on the fluoride release rate and chemical degradation kinetics. By exchanging the membranes into the Na+ form, thermal degradation was avoided, allowing us to study the role of crystallinity as a function of fluoride release. Ultimately, Nafion® crystallinity was deemed an important factor in deterring peroxide radical attack. As the percent crystallinity decreased with annealing temperature, the fluoride concentration in the resulting Fenton's media increased accordingly, indicating that the amorphous regions of the polymer are more susceptible to chemical degradation via peroxide radical attack. / Ph. D.

Page generated in 0.0798 seconds