• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthèses chimiques, transformation de phase et étude des propriétés magnétiques des nanoparticules de FePt et FePd

Delattre, Anastasia 24 September 2010 (has links) (PDF)
Ce travail porte sur la compréhension de la synthèse par voie chimique de nanoparticules (NPs) de FePt et FePd, et sur la recherche de voies pour obtenir la phase cristalline L10, en évitant les phénomènes de coalescence associés au recuit thermique. En remplaçant l'oleylamine par l'hexadécanenitrile, les NPs de FePt de 3-4 nm ont une composition interne plus homogène. Par une étude systématique (plan d'expérience reposant sur les tables de Taguchi), nous avons développé la synthèse de NPs de FePd, en mettant en évidence l'impact de chaque ligand et du réducteur. Afin d'induire la transition de phase sans coalescence des NPs, nous avons exploré deux méthodes. Dans la première, nous proposons de générer les lacunes par l'irradiation par d'ions légers, leur diffusion étant permise par un recuit à température modérée (300°C). Nous observons, sans coalescence, un accroissement important de l'anisotropie magnétique des NPs, avec une température de blocage multipliée par 4. Cependant, l'ordre chimique élevé de la phase L10 n'est pas obtenu, ce que nous interprétons. Notre seconde approche repose sur la dispersion des NPs dans une matrice granulaire de NaCl avant le recuit à 700°C. L'ordre chimique et l'anisotropie magnétocristalline obtenues sont élevées, la température de blocage est supérieure à 400°C. Nous avons mis au point une méthode pour transférer ces NPs dans des solutions stables, aqueuses ou organiques. Ces NPs de très forte anisotropie sont maintenant disponibles pour des manipulations et l'auto-organisation. Elles ouvrent de nombreuses perspectives d'études fondamentales et d'applications (stockage de l'information, biologie...).
2

De la synthèse chimique de nanoparticules aux matériaux magnétiques nano-structurés : une approche pour des aimants permanents sans terre rare / From the chemical synthesis of nanoparticles to nano-structured magnetic materials : A bottom-up approach for rare earth free permanent magnets

Pousthomis, Marc 08 January 2016 (has links)
La fabrication d’aimants permanents nano-structurés est l’une des solutions envisagées pour remplacer les aimants actuels à base de terres rares, pour lesquelles se posent des problèmes géopolitiques et environnementaux. Dans le but d’élaborer de tels matériaux, nous avons suivi une approche bottom-up utilisant des méthodes chimiques.Nos travaux ont visé dans un premier temps à synthétiser des nanoparticules (NPs) magnétiques dures qui peuvent servir de briques élémentaires dans la fabrication d’aimants nano-structurés. Notre étude systématique sur des nanobâtonnets de cobalt (NBs Co) synthétisés par voie polyol, a montré que leur champ coercitif augmente de 3 à 7 kOe avec la diminution du diamètre et l’augmentation du rapport d’aspect structural. Des simulations micro-magnétiques ont montré qu’un mécanisme de retournement d’aimantation par nucléation-propagation de parois rendait compte des résultats expérimentaux. Des NPs bi-métalliques FePt et tri-métalliques FePtX (X = Ag, Cu, Sn, Sb) de structure CFC ont été obtenues par l’adaptation d’une synthèse organométallique ou par la réduction d’acétylacétonates métalliques. Les recuits à haute température (650°C pour FePt, 400°C pour FePtX) ont conduit à la transition de phase FePt CFC L10 et à des champs coercitifs élevés (>12 kOe). La maîtrise d’un procédé multi-étapes, impliquant la protection des NPs FePt CFC par une coquille MgO et un recuit à 850°C, a permis d’obtenir des NPs FePt L10 de taille moyenne 10 nm présentant des champs coercitifs jusqu’à 27 kOe.La seconde partie de nos travaux a porté sur l’assemblage de NPs présentant des anisotropies différentes. Deux systèmes ont été étudiés : FePt CFC+FeCo CC, FePt L10+NBs Co HCP. Dans les deux cas, le contact entre les deux types de NPs a été favorisé par l’utilisation d’un ligand bi-fonctionnel suivi d’un traitement thermique. Dans le système FePt+FeCo, le recuit à haute température (650°C), nécessaire pour obtenir la phase FePt L10, a entraîné l’inter-diffusion des phases et la quasi-disparition de la phase FeCo CC. Dans le second système FePt+Co, un comportement de spring magnet a clairement été identifié, les deux phases étant efficacement couplées. L’inter-diffusion des phases a été limitée par la température modérée du recuit (400°C). Un champ coercitif de 10 kOe a été mesuré pour une teneur en Pt de seulement 25%at., malgré la perte de la forme anisotrope des NBs Co. / The production of nano-structured permanent magnets is a promising alternative to rare earth magnets, which induced geopolitical and environmental issues. In order to elaborate such materials, we followed a bottom-up approach based on chemical methods. A first objective consisted in synthesizing hard magnetic nanoparticles (NPs) as building blocks for nano-structured magnets. The properties of cobalt nanorods (Co NRs) synthesized by the polyol process have been systematically studied. Coercive fields could be raised from 3 to 7 kOe by decreasing the diameter and improving the structural aspect ratio. Micro-magnetic simulations showed that a magnetization reversal following a nucleation and domain-wall propagation process could explain the experimental results. Bi-metallic FePt and tri-metallic FePtX (X = Ag, Cu, Sn, Sb) exhibiting the FCC structure were synthesized following two routes based on the reduction of an organometallic Fe precursor or of metallic acetylacetonates. Annealing at high temperatures (650°C for FePt, 400°C for FePtX) allowed the phase transition FCC  L10 to occur, leading to high coercive fields (>12 kOe). A multi-steps process, involving the protection of FePt NPs with an MgO shell and an annealing at 850°C, was optimized to produce L10 FePt NPs with a mean size of 10 nm and a coercivity up to 27 kOe. In the second part of our study, we worked on assemblies of NPs with different magnetic anisotropies. Two systems were studied : FCC FePt+BCC FeCo, L10 FePt+HCP Co NRs. In both cases, the contact between the two types of NPs was favored by the presence of a bi-functional ligand followed by an annealing step. Concerning the FePt+FeCo system, the high temperature annealing (650°C), required to get the L10 FePt phase, led to the inter-diffusion of the phases and to the dissolution of the BCC FeCo phase. For the FePt+Co system, a spring magnet behavior has been clearly evidenced, the two phases being efficiently coupled The inter-diffusion of the phases was limited thanks to the fairly low annealing temperature (400°C). A coercive field of 10 kOe was measured for a Pt content as low as 25%at., eventhough the Co NRs anisotropic morphology was lost

Page generated in 0.1258 seconds