• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fisiologia da levedura Dekkera bruxellensis durante a fermentação com substratos industriais

PEREIRA, Luciana Filgueira 31 January 2013 (has links)
Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-04-17T15:22:13Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Luciana Pereira.compressed.pdf: 4618352 bytes, checksum: dfc01e0d1bf57db6a0daaa7da4bafdf1 (MD5) / Made available in DSpace on 2015-04-17T15:22:13Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Luciana Pereira.compressed.pdf: 4618352 bytes, checksum: dfc01e0d1bf57db6a0daaa7da4bafdf1 (MD5) Previous issue date: 2013 / FACEPE / A levedura Dekkera bruxellensis tem sido conhecida por sua adaptação aos processos fermentativos industriais, tendo chegado a situações que suplanta a levedura do processo Saccharomyces cerevisiae possuindo rendimentos equivalentes. Apesar de possuir grande adaptabilidade ao ambiente industrial, ainda são escassos trabalhos que se dediquem ao estudo de suas características fisiológicas e bioquímicas e que expliquem seu sucesso adaptativo. Este trabalho teve por objetivo descrever o metabolismo fermentativo da levedura GDB 248 em situações que simulem os processos fermentativos industriais na produção do álcool combustível bem como, sua tolerância aos diferentes fatores de estresse presentes no ambiente industrial. Foram realizadas fermentações com reciclo celular em meios sintético e caldo de cana. Os resultados mostraram que as células de D. bruxellensis possuem baixa eficiência no consumo da sacarose (consumo máximo 30%), maior tendência de conversão de açúcar em biomassa, mas exibem rendimentos em etanol próximos ao de S. cerevisiae. Os experimentos de tolerância aos fatores de estresse adicionados nas fermentações mostraram que D. bruxellensis possui, quando comparada a S. cerevisiae, tanto tolerância similar ao etanol quanto sensibilidade a ácidos orgânicos (acético e lático). Não foi detectada a produção de acido acético nas culturas de D. bruxellensis, tendo em ácido lático produção similar a S. cerevisiae. Para avaliar a tolerância de D. bruxellensis ao estresse, foram realizadas curvas de sobrevivência celular na presença dos agentes de estresse: H2O2, etanol, KCl, e após um choque térmico, relacionando o envolvimento de três proteínas de choque térmico no padrão transcricional desta resposta. Em conjunto, os resultados mostraram que as células de D. bruxellensis foram mais sensíveis aos fatores de estresse testados, quando comparados a S. cerevisaie, apesar de exibir tolerância similar ao etanol. Os genes HSP22, HSP24 e HSP82 são apenas responsivos ao choque térmico, mas suas proteínas não conferem tolerância às células. Por fim, para avaliar o comportamento desta levedura em outro substrato, frequentemente utilizado em destilarias no Brasil, e assim, compararmos o melhor desempenho desta espécie realizamos fermentações com reciclo em melaço e, desta vez, determinamos o conteúdo intracelular de trealose e glicogênio. No melaço, D. bruxellensis mostrou comportamento similar quanto à assimilação de sacarose, tendo tendência ao desvio do açúcar para biomassa e rendimento final em etanol equivalente ao produzido pelas células de S. cerevisiae. Mas, neste substrato, foi detectado a produção de ácido acético por esta levedura em quantidades superiores ao detectado nas culturas com S. cerevisiae. Quanto ao conteúdo intracelular dos carboidratos de reserva, só foi possível a detecção de glicogênio em quantidades inferiores a S. cerevisiae, pois nenhuma produção de trealose foi detectada em nossos ensaios.
2

Produção de etanol a partir de xilose com glicose isomerase e Saccharomyces cerevisiae coimobilizadas em gel de alginato / Ethanol Production from Xylose with xylose isomerase and Saccharomyces cerevisiae co-immobilized alginate gel

Aquino, Patrícia Marina de 20 June 2013 (has links)
Made available in DSpace on 2016-06-02T19:56:52Z (GMT). No. of bitstreams: 1 5338.pdf: 2812584 bytes, checksum: c4ea2f65f591bec0e6ad7105c6ec591e (MD5) Previous issue date: 2013-06-20 / Universidade Federal de Minas Gerais / In this work, it was studied the simultaneous isomerization and fermentation of xylose to ethanol (SIF) using xylose isomerase (XI) and S. cerevisiae co-immobilized in calcium alginate gel. XI was immobilized on chitosan gel activated with glutaraldehyde (IXI-Ch). The influence of the concentration of enzyme/yeast in the reactor, the pH, temperature and yeast strain on yield and selectivity in ethanol was studied. The concentrations of enzyme and yeast in the reactor were varied by changing the mass of IXI-Ch and yeast per gram of alginate solution, maintaining fixed the ratios of biocatalyst weight: volume of medium in the reactor (1:1). The SIFs were carried out in batch with xylose (65g.L-1), antibiotics and other salts. The first experiment, with 16% Itaiquara® yeast and 5% enzyme biocatalyst (% wenzyme or yeast/wbiocatalyst) showed that pH drop occurred during the test, preventing full conversion of xylose, due to reduced enzyme activity. calcium carbonate (0.5-1.0%) was then included in the biocatalyst, which maintained the pH between 5,2 to 5,6, allowing complete conversion of the sugar at all concentrations tested (%Yeast -Enzyme in biocatalyst): 5-20, 17-5, and 10 yeast (Itaiquara ®) with 5, 10 and 20-. The maximum ethanol productivity, 2,44 ± 0,26g.L-1.h- 1 was obtained for the highest cell concentration and the highest selectivity ethanol/xylitol, 2,57 ± 0.4 and 2,42 ± 0,01 for the highest enzyme concentrations (10 and 20% with 10% yeast). These results indicated that the highest concentration of xylulose favored more selectivity to ethanol. Fermentation was then performed using no enzyme in biocatalyst with a prior isomerized syrup concentrated in xylulose containing 58g.L-1 xylulose and 9g.L-1 xylose and another with xylose only. At first, xylulose was completely assimilated in 5 hours, xylose was barely consumed in both assays, and ethanol selectivity was lower than that obtained in the SIF tests. Xylitol show thus to be produced mainly from xylulose and selectivity contrary to expectations did not directly increase with increasing xylulose concentration, indicating that the formation of ethanol/xylitol depends not only on external xylulose, and it is probably finely regulated in yeast. The concentrations of enzyme and yeast 20 and 10% (equivalent to 100gderived.L-1 reactor and 50gwd.L-1 reactor) were selected as the best, which were used to study the influence of pH and temperature, and also different strains. The increase of initial pH from 5.6 to 6.5 did not improve the productivity, yield, neither selectivity in ethanol. Temperatures tested for Itaiquara ® were 32, 35 and 37 ° C, and for industrial strains CAT-1 and BG-1: 32, 37 and 40 ° C. Viability remained above 90% for all assays at 24 hours. All three strains showed increased selectivity in ethanol with temperature reduction, obtaining the maximum selectivity for industrial strains (3,06 ± 0,24 - CAT-1 and 3,19 ± 0,11 BG-1) with yield and productivity equal or greater than those obtained in higher temperatures. At 32 ° C and pH 5.6, Itaiquara ® showed lower conversion time, but lower selectivity, while the BG-1, demonstrated the highest selectivity, but low conversion and productivity. The strain CAT-1 combines high productivity, 2,17 ± 0,17 g.L-1.h-1, and selectivity, 3,06 ± 0,24, with 90% conversion in 9 hours, 32 ° C, which is apparently the best performance among the tested yeasts. The results were very promising, indicating the technical feasibility of producing ethanol from xylose with the biocatalyst developed. / Neste trabalho foi estudada a simultânea isomerização e fermentação de xilose a etanol (SIF) usando xilose isomerase (XI) e S. cerevisiae coimobilizadas em gel de alginato de cálcio. XI foi imobilizada em gel de quitosana ativado com glutaraldeido (IXI-Ch).. Foram estudadas as influências das concentrações de enzima/levedura no reator, do pH, da temperatura e da linhagem de levedura na produtividade e na seletividade em etanol. As concentrações de enzima e levedura no reator foram variadas mudando-se a massa de IXI-Ch e levedura por grama de solução de alginato, mantendo-se fixas as proporções 1:1 massa de biocatalisador:volume de meio no reator. As SIFs foram realizadas em batelada com xilose (~65g.L-1), antibiótico e outros sais. O primeiro experimento realizado, biocatalisador com 16% levedura Itaiquara® e 5% enzima (% menzima ou levedura/mbiocatalisador), mostrou que ocorria queda de pH durante o ensaio, impedindo conversão total da xilose, devido à redução da atividade enzimática. Foi incluído carbonato de cálcio 0,5-1,0% no biocatalisador, o que manteve o pH entre 5,2-5,6, permitindo total conversão do açúcar, em todas as concentrações testadas (%Levedura-Enzima no biocatalisador): 5-20, 17-5 e 10 levedura (Itaiquara®)com 5, 10 e 20% enzima. A máxima produtividade em etanol, 2,44 ± 0,26g.L-1.h-1, foi obtida para a mais alta concentração celular e a mais alta seletividade etanol/xilitol, 2,57± 0,4 e 2,42± 0,01, para as mais altas concentrações de enzima (10 e 20% com 10% levedura). Esses resultados indicavam que quanto mais alta a concentração de xilulose, mais favorecida a seletividade em etanol. Foi então realizada uma fermentação usando o biocatalisador sem enzima, com um xarope previamente isomerizado e concentrado em xilulose contendo 58g/L de xilulose e 9g/L xilose e outro apenas com xilose. No primeiro, xilulose foi totalmente assimilada em 5 horas, xilose foi pouco consumida nos dois ensaios, e a seletividade em etanol foi menor que a obtida nos ensaios SIF. Xilitol mostrou, assim, ser produzido majoritariamente a partir de xilulose e contrariamente ao esperado a seletividade não aumenta diretamente com o aumento da concentração de xilulose, indicando que o metabolismo etanol/xilitol não depende apenas da concentração externa de xilulose, devendo ser finamente regulado dentro da levedura. Selecionaram-se as concentrações de enzima e levedura de 20 e 10% (equivalente a 100gderivado.L-1 reator e 50gms.L-1 reator) como as melhores, as quais foram utilizadas para estudo da influência do pH e da temperatura e ainda de diferentes linhagens. O aumento do pH inicial do meio de 5,6 para 6,5 não favoreceu a produtividade, rendimento e nem a seletividade em etanol. As temperaturas testadas para Itaiquara® foram: 32, 35 e 37°C; e para as linhagens industriais CAT-1 e BG-1: 32, 37 e 40°C. A viabilidade manteve-se acima de 90% para todos os ensaios em 24 horas. As três linhagens mostraram aumento da seletividade em etanol com a redução da temperatura, obtendo-se a máxima seletividade para as linhagens industriais (3,06± 0,24- CAT-1 e 3,19± 0,11 BG-1), com rendimento e produtividade iguais ou maiores que os obtidos nas temperaturas maiores. A 32°C e pH 5,6, Itaiquara® apresentou menor tempo de conversão, mas a menor seletividade, já a BG-1, obteve maior seletividade, mas baixa conversão, rendimento e produtividade. A linhagem CAT-1 alia alta produtividade, 2,17 ± 0,17 (g.L-1.h-1), e seletividade, 3,06 ± 0,24, com 90% de conversão em 9 horas, 32°C, sendo aparentemente a de melhor desempenho dentre as testadas. Os resultados foram muito promissores, indicando viabilidade técnica de produção de etanol a partir de xilose com o biocatalisador desenvolvido.

Page generated in 0.0718 seconds