• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • Tagged with
  • 8
  • 8
  • 7
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Análise da expressão dos genes relacionados à assimilação do nitrato na levedura Dekkera Bruxellensis

PITA, Will de Barros 31 January 2009 (has links)
Made available in DSpace on 2014-06-12T18:02:03Z (GMT). No. of bitstreams: 2 arquivo3634_1.pdf: 1182297 bytes, checksum: 555f62e24f992ab833cb18ef506968ae (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2009 / Conselho Nacional de Desenvolvimento Científico e Tecnológico / A levedura Dekkera bruxellensis foi identificada como principal contaminante dos processos de fermentação alcoólica em destilarias do Brasil, do Canadá e dos EUA. Contagens elevadas desta levedura podem resultar em diminuição da produtividade etanólica, com conseqüente prejuízo econômico. Recentemente, esta levedura teve seu genoma parcialmente seqüenciado e foram identificadas seqüências correspondentes a genes do metabolismo do nitrato. A presença de tais genes indica que D. bruxellensis possa usufruir deste composto como fonte de nitrogênio, ao contrário de Saccharomyces cerevisiae, durante o processo fermentativo. Como estas leveduras competem no ambiente industrial, a presença de nitrato poderia ser um fator diferencial na adaptação de D. bruxellensis, visto que esta fonte pode estar presente no caldo de cana proveniente do processo de adubação da cana de açúcar. Assim, os objetivos deste trabalho foram analisar o perfil de expressão dos genes da via metabólica do nitrato de D. bruxellensis em meios laboratoriais e verificar se esta levedura expressa estes genes em caldo de cana industrial utilizando a técnica de PCR quantitativa (qPCR). As células de D. bruxellensis foram cultivadas em meios sintéticos contendo glicose como fonte de carbono na presença de amônia, de nitrato ou ambas as fontes. As células foram coletadas em pontos específicos para extração do RNA, síntese de cDNA e analise por qPCR utilizando o método 2-ΔΔCt para quantificação da expressão gênica. Como controle endógeno foi empregado o gene EFA1. Todos os quatro genes estudados apresentaram indução de sua expressão na presença de nitrato e foram sujeitos à repressão catabólica do nitrogênio quando a amônia estava presente no meio. Adicionalmente, a presença e o consumo de nitrato no caldo de cana foram investigados. Neste substrato, os genes apresentaram perfil de expressão diferente do observado nos meios YNB. O nitrato foi detectado no caldo de cana e seu consumo ao longo do tempo foi determinado. Este estudo comprova que os genes da assimilação do nitrato em D. bruxellensis são induzidos em presença deste composto e reprimidos na presença de amônia. As células de D. bruxellensis expressaram estes genes no caldo de cana. Entretanto, maiores estudos acerca da regulação da expressão dos genes desta via metabólica ainda são necessários para correlacionar esta expressão com a adaptação de D. bruxellensis no meio de fermentação alcoólica
2

Análise da constituição genética de linhagens industriais da levedura Dekkera bruxellensis

LIBERAL, Anna Theresa de Souza 31 January 2010 (has links)
Made available in DSpace on 2014-06-12T18:02:04Z (GMT). No. of bitstreams: 2 arquivo767_1.pdf: 2982127 bytes, checksum: ec4ba15e127a34669d0fe0a656f86bc3 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2010 / A levedura Dekkera bruxellensis vem se mostrando um importante microrganismo industrial, não apenas por causar eventos de contaminação em diversos processos fermentativos como também pela alta adaptação a esses processos. Este trabalho teve como objetivo principal identificar características genéticas básicas como composição genômica e cariotípica de linhagens industriais da levedura Dekkera bruxellensis a partir do uso de técnicas moleculares. Nesse trabalho, conseguimos visualizar o número e tamanho dos cromossomos das linhagens industriais de álcool combustível através da técnica de PFGE. Identificamos e analisamos estruturalmente os genes envolvidos na via do metabolismo central fermentativo através de busca no genoma seqüenciado, depositado no Banco de Dados do Projeto Dekkera bruxellensis. Analisamos a constituição genética e o status filogenético da D. bruxellensis em relação ao grupo ascomiceto através da análise dos genes piruvato descarboxilase (PDC) e álcool desidrogenase (ADH). Além disso, realizamos experimentos de expressão gênica por PCR em Tempo Real com os genes dbARO10 e dbADH em diversos meios com diferentes fontes de Carbono e Nitrogênio, verificando a resposta dessa levedura e analisando sua atividade enzimática para a fenilpiruvato descarboxilase e a álcool desidrogenase. Este foi um trabalho prospectivo, que fornece um painel inicial sobre a constituição genética desta levedura. Entretanto, algumas perguntas foram respondidas a partir dos resultados obtidos. Nos nossos trabalhos anteriores foi verificada a presença de dois padrões distintos de fingerprinting dos isolados de fermentação alcoólica. Esta variação de perfis refletiu-se nas variações cromossômicas, tanto em número quanto em tamanho. Pelas análises filogenéticas foi possível também, posicionar a D. bruxellensis dentro do grupo dos ascomicetos para os genes estudados
3

Fisiologia da levedura Dekkera bruxellensis durante a fermentação com substratos industriais

PEREIRA, Luciana Filgueira 31 January 2013 (has links)
Submitted by Daniella Sodre (daniella.sodre@ufpe.br) on 2015-04-17T15:22:13Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Luciana Pereira.compressed.pdf: 4618352 bytes, checksum: dfc01e0d1bf57db6a0daaa7da4bafdf1 (MD5) / Made available in DSpace on 2015-04-17T15:22:13Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Luciana Pereira.compressed.pdf: 4618352 bytes, checksum: dfc01e0d1bf57db6a0daaa7da4bafdf1 (MD5) Previous issue date: 2013 / FACEPE / A levedura Dekkera bruxellensis tem sido conhecida por sua adaptação aos processos fermentativos industriais, tendo chegado a situações que suplanta a levedura do processo Saccharomyces cerevisiae possuindo rendimentos equivalentes. Apesar de possuir grande adaptabilidade ao ambiente industrial, ainda são escassos trabalhos que se dediquem ao estudo de suas características fisiológicas e bioquímicas e que expliquem seu sucesso adaptativo. Este trabalho teve por objetivo descrever o metabolismo fermentativo da levedura GDB 248 em situações que simulem os processos fermentativos industriais na produção do álcool combustível bem como, sua tolerância aos diferentes fatores de estresse presentes no ambiente industrial. Foram realizadas fermentações com reciclo celular em meios sintético e caldo de cana. Os resultados mostraram que as células de D. bruxellensis possuem baixa eficiência no consumo da sacarose (consumo máximo 30%), maior tendência de conversão de açúcar em biomassa, mas exibem rendimentos em etanol próximos ao de S. cerevisiae. Os experimentos de tolerância aos fatores de estresse adicionados nas fermentações mostraram que D. bruxellensis possui, quando comparada a S. cerevisiae, tanto tolerância similar ao etanol quanto sensibilidade a ácidos orgânicos (acético e lático). Não foi detectada a produção de acido acético nas culturas de D. bruxellensis, tendo em ácido lático produção similar a S. cerevisiae. Para avaliar a tolerância de D. bruxellensis ao estresse, foram realizadas curvas de sobrevivência celular na presença dos agentes de estresse: H2O2, etanol, KCl, e após um choque térmico, relacionando o envolvimento de três proteínas de choque térmico no padrão transcricional desta resposta. Em conjunto, os resultados mostraram que as células de D. bruxellensis foram mais sensíveis aos fatores de estresse testados, quando comparados a S. cerevisaie, apesar de exibir tolerância similar ao etanol. Os genes HSP22, HSP24 e HSP82 são apenas responsivos ao choque térmico, mas suas proteínas não conferem tolerância às células. Por fim, para avaliar o comportamento desta levedura em outro substrato, frequentemente utilizado em destilarias no Brasil, e assim, compararmos o melhor desempenho desta espécie realizamos fermentações com reciclo em melaço e, desta vez, determinamos o conteúdo intracelular de trealose e glicogênio. No melaço, D. bruxellensis mostrou comportamento similar quanto à assimilação de sacarose, tendo tendência ao desvio do açúcar para biomassa e rendimento final em etanol equivalente ao produzido pelas células de S. cerevisiae. Mas, neste substrato, foi detectado a produção de ácido acético por esta levedura em quantidades superiores ao detectado nas culturas com S. cerevisiae. Quanto ao conteúdo intracelular dos carboidratos de reserva, só foi possível a detecção de glicogênio em quantidades inferiores a S. cerevisiae, pois nenhuma produção de trealose foi detectada em nossos ensaios.
4

Caracterização e comportamento fermentativo de linhagens de Dekkera contaminantes da fermentação alcoólica / Characterization and fermentative behavior of Dekkera strains contaminating alcoholic fermentation

Meneghin, Maria Cristina 21 February 2008 (has links)
As leveduras Dekkera/Brettanomyces estão envolvidas na deterioração de vinhos após o término das fermentações alcoólicas e maloláticas, tendo se apresentado como agente contaminante de processos contínuos de produção de etanol industrial. São caracterizadas pela morfologia celular típica (células alongadas e ogivais), alta produção de ácido e crescimento lento, porém de difícil identificação. Embora muitos trabalhos já tenham sido publicados acerca do seu papel na fermentação do vinho, pouco se conhece sobre o seu comportamento no processo de fermentação para produção de álcool combustível. Desta forma, este trabalho objetivou selecionar, identificar e caracterizar linhagens de Dekkera e Brettanomyces isoladas de processos fermentativos, através de testes de taxonomia clássica, moleculares (PCR e sequenciamento) e de biotipagem através do sistema killer, visando a avaliação de fermentações mistas de Saccharomyces cerevisiae e Dekkera bruxellensis, a última em níveis de contaminação variando de 101 a 103 células/mL, em meio de caldo de cana, em processo de fermentação em batelada com reciclo celular (14 ciclos de 12 horas) para produção de etanol. Os testes morfológicos e fisiológicos/bioquímicos de oito linhagens selecionadas pela alta produtividade de ácido a partir da glicose e morfologia celular característica, apontaram os gêneros Dekkera ou Brettanomyces, sem possibilidade de identificação em nível de espécie devido à ambigüidade dos resultados dos testes fisiológicos. O sequenciamento da região ITS (Internal transcribed spacer) do DNA ribossomal confirmou somente três linhagens como Dekkera bruxellensis, sendo as demais predominantemente pertencentes à espécie Pichia guillermondii. O tamanho da região ITS, incluindo o gene 5,8S, variou de 400 500 pb entre as três linhagens. A utilização do sistema killer como método de biotipagem para leveduras Dekkera mostrou-se inviável devido ao fenótipo predominantemente neutro apresentado pelas linhagens. Somente a levedura killer CCA510 (Kluyveromyces marxianus) apresentou atividade inibitória contra as três linhagens de D. bruxellensis. Os ensaios fermentativos realizados com a linhagem de D. bruxellensis (CCA059) em fermentações puras e mistas com S. cerevisiae (CCA193, PE-02), mostraram que a levedura contaminante foi capaz de crescer em meio de caldo de cana, independentemente do tamanho do seu inóculo inicial (101 a 103 células/mL), impactando negativamente a fermentação etanólica, causando a diminuição da viabilidade de S. cerevisiae, diminuindo o pH do meio, decréscimo na produção de etanol e eficiência fermentativa, possivelmente devido à produção de ácido acético a partir do ART do meio de fermentação. Extrapolando-se os resultados obtidos em escala de laboratório para a escala industrial de uma destilaria de médio porte, a contaminação por Dekkera bruxellensis acarretaria uma perda de 6 milhões a 15 milhões de litros de álcool na safra, que deixariam de ser produzidos, dependendo do nível de contaminação. / Dekkera/Brettanomyces yeasts are found to be either contaminants in wine after completion of alcoholic and malolactic fermentations and in continuous fermentations for fuel alcohol production. They are characterized by typical cell morphology (elongated and ogival cells), high acid production and slow growth, however not easily identified. Although their role in wine fermentations is well-defined, a little is known about their behavior during fermentation for ethanol production. This work aimed the screening, identification and characterization of Dekkera and Brettanomyces strains isolated from fermentative processes, through classical taxonomic tests, molecular analysis (PCR and DNA sequencing) and biotyping by killer system. Following fermentation essays were carried out to evaluate mixed fermentations of Saccharomyces cerevisiae and Dekkera bruxellensis, the last one in contamination levels varying from 101 to 103 cells/mL, in sugar cane medium, using batch fermentation process with cell recycle (fourteen 12-hour cycles) for fuel ethanol production. Morphological and physiological/biochemical tests involving eight strains selected for their high acid production from glucose and typical cell morphology, pointed out to the genera Dekkera or Brettanomyces, without possibility of species identification due to the variability and ambiguity of physiological tests. DNA sequencing of the ITS (Internal transcribed spacer) region belonging to ribosomal DNA confirmed only three strains as Dekkera bruxellensis, the others were predominantly Pichia guilliermondii. The ITS region, including the 5,8S gene, varied from 400 to 500 bp among the three strains. The use of killer system as a biotyping method for Dekkera strains might not be applied because the strains were predominantly neutral to killer toxins. Only the killer strain CCA510 (Kluyveromyces marxianus) showed to have inhibitory activity against the strains of D. bruxellensis. The fermentative essays using a strain of D. bruxellensis (CCA059) in mixed and pure fermentations with S. cerevisiae (CCA193, PE-02), have shown that the contaminant yeast was able to grown in sugar cane juice, regardless of the initial inoculum size ((101 to 103 cells/mL), impairing the bioethanol fermentation, causing diminished S. cerevisiae viability, pH decrease, lower ethanol production and fermentative efficiency, mainly due to the acetic acid production from reducing sugar present in fermentation medium. Extrapolation of the results obtained in laboratory scale to industrial scale in a medium-sized distillery, have revealed that contamination by Dekkera bruxellensis would result in a alcohol loss of 6 millions to 15 millions of liters, which would not be produced, depending on the contamination level.
5

Estudo do metabolismo e influência de fontes de nitrogênio na fisiologia e expressão gênica da levedura Dekkera Bruxellensis

Pita, Will de Barros 31 January 2012 (has links)
Submitted by Amanda Silva (amanda.osilva2@ufpe.br) on 2015-04-08T14:48:36Z No. of bitstreams: 2 Tese de Doutorado_Will de Barros Pita_CCB_2012.pdf: 2965963 bytes, checksum: babbeaf0d359662414391200c3f5a596 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) / Made available in DSpace on 2015-04-08T14:48:36Z (GMT). No. of bitstreams: 2 Tese de Doutorado_Will de Barros Pita_CCB_2012.pdf: 2965963 bytes, checksum: babbeaf0d359662414391200c3f5a596 (MD5) license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Previous issue date: 2012 / CNPq; CAPES; FACEPE / A levedura Dekkera bruxellensis é consistentemente associada a contaminações de processos de fermentação alcoólica industrial. Na produção de vinhos, esta levedura é responsável pela produção de aromas indesejáveis, enquanto que na produção de etanol combustível, D. bruxellensis compete com Saccharomyces cerevisiae pelo substrato industrial. Apesar de compartilhar alguns fenótipos com S. cerevisiae, D. bruxellensis apresenta características peculiares, como por exemplo, a capacidade de utilizar nitrato como única fonte de nitrogênio. No ambiente industrial, as quantidades de açúcares são elevadas e, nesses casos, o fator limitante do crescimento é geralmente a disponibilidade de nitrogênio, um nutriente essencial para todas as formas de vida. O objetivo do presente trabalho foi investigar o metabolismo de diferentes fontes de nitrogênio e determinar a influência da natureza e da concentração destas fontes na fisiologia e expressão gênica de D. bruxellensis, em busca de potenciais fatores positivos de adaptação para esta levedura. Os resultados mostraram que a assimilação de nitrato pode favorecer D. bruxellensis no ambiente industrial, pois fornece o nitrogênio necessário para manter o crescimento desta levedura mesmo após a depleção da amônia no caldo de cana. Adicionalmente, a escassez de nitrogênio diminui a taxa de crescimento, consumo de açúcares e produção de etanol em D. bruxellensis. No entanto, a limitação de carbono é ainda mais drástica para o metabolismo celular, ocasionando redução significativa dos principais parâmetros fisiológicos. Com relação à assimilação de fontes de nitrogênio, as enzimas glutamato desidrogenase e glutamato sintase podem trocar de papéis como principal via de biossíntese de glutamato e que genes codificantes de permeases de nitrogênio estão sob rígido controle transcricional. Além disso, D. bruxellensis apresenta preferência pela utilização do metabolismo respiratório em detrimento da fermentação em condições limitantes de crescimento. Finalmente, um novo grupo de genes de referência para ensaios de expressão gênica em D. bruxellensis foi estabelecido. A partir dos resultados gerados no presente trabalho, é possível entender as repostas metabólicas de D. bruxellensis em diferentes fontes de nitrogênio, o que pode auxiliar na identificação de novos fatores de adaptação para esta levedura, que permitem o seu estabelecimento e manutenção no ambiente indutrial.
6

Caracterização e comportamento fermentativo de linhagens de Dekkera contaminantes da fermentação alcoólica / Characterization and fermentative behavior of Dekkera strains contaminating alcoholic fermentation

Maria Cristina Meneghin 21 February 2008 (has links)
As leveduras Dekkera/Brettanomyces estão envolvidas na deterioração de vinhos após o término das fermentações alcoólicas e maloláticas, tendo se apresentado como agente contaminante de processos contínuos de produção de etanol industrial. São caracterizadas pela morfologia celular típica (células alongadas e ogivais), alta produção de ácido e crescimento lento, porém de difícil identificação. Embora muitos trabalhos já tenham sido publicados acerca do seu papel na fermentação do vinho, pouco se conhece sobre o seu comportamento no processo de fermentação para produção de álcool combustível. Desta forma, este trabalho objetivou selecionar, identificar e caracterizar linhagens de Dekkera e Brettanomyces isoladas de processos fermentativos, através de testes de taxonomia clássica, moleculares (PCR e sequenciamento) e de biotipagem através do sistema killer, visando a avaliação de fermentações mistas de Saccharomyces cerevisiae e Dekkera bruxellensis, a última em níveis de contaminação variando de 101 a 103 células/mL, em meio de caldo de cana, em processo de fermentação em batelada com reciclo celular (14 ciclos de 12 horas) para produção de etanol. Os testes morfológicos e fisiológicos/bioquímicos de oito linhagens selecionadas pela alta produtividade de ácido a partir da glicose e morfologia celular característica, apontaram os gêneros Dekkera ou Brettanomyces, sem possibilidade de identificação em nível de espécie devido à ambigüidade dos resultados dos testes fisiológicos. O sequenciamento da região ITS (Internal transcribed spacer) do DNA ribossomal confirmou somente três linhagens como Dekkera bruxellensis, sendo as demais predominantemente pertencentes à espécie Pichia guillermondii. O tamanho da região ITS, incluindo o gene 5,8S, variou de 400 500 pb entre as três linhagens. A utilização do sistema killer como método de biotipagem para leveduras Dekkera mostrou-se inviável devido ao fenótipo predominantemente neutro apresentado pelas linhagens. Somente a levedura killer CCA510 (Kluyveromyces marxianus) apresentou atividade inibitória contra as três linhagens de D. bruxellensis. Os ensaios fermentativos realizados com a linhagem de D. bruxellensis (CCA059) em fermentações puras e mistas com S. cerevisiae (CCA193, PE-02), mostraram que a levedura contaminante foi capaz de crescer em meio de caldo de cana, independentemente do tamanho do seu inóculo inicial (101 a 103 células/mL), impactando negativamente a fermentação etanólica, causando a diminuição da viabilidade de S. cerevisiae, diminuindo o pH do meio, decréscimo na produção de etanol e eficiência fermentativa, possivelmente devido à produção de ácido acético a partir do ART do meio de fermentação. Extrapolando-se os resultados obtidos em escala de laboratório para a escala industrial de uma destilaria de médio porte, a contaminação por Dekkera bruxellensis acarretaria uma perda de 6 milhões a 15 milhões de litros de álcool na safra, que deixariam de ser produzidos, dependendo do nível de contaminação. / Dekkera/Brettanomyces yeasts are found to be either contaminants in wine after completion of alcoholic and malolactic fermentations and in continuous fermentations for fuel alcohol production. They are characterized by typical cell morphology (elongated and ogival cells), high acid production and slow growth, however not easily identified. Although their role in wine fermentations is well-defined, a little is known about their behavior during fermentation for ethanol production. This work aimed the screening, identification and characterization of Dekkera and Brettanomyces strains isolated from fermentative processes, through classical taxonomic tests, molecular analysis (PCR and DNA sequencing) and biotyping by killer system. Following fermentation essays were carried out to evaluate mixed fermentations of Saccharomyces cerevisiae and Dekkera bruxellensis, the last one in contamination levels varying from 101 to 103 cells/mL, in sugar cane medium, using batch fermentation process with cell recycle (fourteen 12-hour cycles) for fuel ethanol production. Morphological and physiological/biochemical tests involving eight strains selected for their high acid production from glucose and typical cell morphology, pointed out to the genera Dekkera or Brettanomyces, without possibility of species identification due to the variability and ambiguity of physiological tests. DNA sequencing of the ITS (Internal transcribed spacer) region belonging to ribosomal DNA confirmed only three strains as Dekkera bruxellensis, the others were predominantly Pichia guilliermondii. The ITS region, including the 5,8S gene, varied from 400 to 500 bp among the three strains. The use of killer system as a biotyping method for Dekkera strains might not be applied because the strains were predominantly neutral to killer toxins. Only the killer strain CCA510 (Kluyveromyces marxianus) showed to have inhibitory activity against the strains of D. bruxellensis. The fermentative essays using a strain of D. bruxellensis (CCA059) in mixed and pure fermentations with S. cerevisiae (CCA193, PE-02), have shown that the contaminant yeast was able to grown in sugar cane juice, regardless of the initial inoculum size ((101 to 103 cells/mL), impairing the bioethanol fermentation, causing diminished S. cerevisiae viability, pH decrease, lower ethanol production and fermentative efficiency, mainly due to the acetic acid production from reducing sugar present in fermentation medium. Extrapolation of the results obtained in laboratory scale to industrial scale in a medium-sized distillery, have revealed that contamination by Dekkera bruxellensis would result in a alcohol loss of 6 millions to 15 millions of liters, which would not be produced, depending on the contamination level.
7

Produção de etanol de 2ª geração por Dekkera bruxellensis a partir de hidrolisado de bagaço de cana-deaçúcar

Codato, Carolina Brito 13 August 2013 (has links)
Made available in DSpace on 2016-06-02T18:55:26Z (GMT). No. of bitstreams: 1 5512.pdf: 1675884 bytes, checksum: 47d8b8c6a94d1de848c43c964a5f3257 (MD5) Previous issue date: 2013-08-13 / Financiadora de Estudos e Projetos / Bioethanol is an alternative low cost fuel, which is conventionally obtained in Brazil from the fermentation of sugarcane juice, molasses, or a mixture of these. However, alternatively, ethanol could be obtained from lignocellulosic materials, wastes or agroindustrial byproducts composed of cellulose, hemicellulose and lignin, such as sugarcane bagasse. For each ton of cane processed, 250 kg of bagasse are obtained on average, which is usually burned for power generation industry. The microbial cultivation using these materials depend on the availability of substrates, accordingly, acid hydrolysis has been considered one of the most widely used process for the depolymerization of the hemicellulose fraction of lignocellulosic materials, due to their low cost and high efficiency. However, under conditions of high temperature and pressure, glucose and xylose released are degraded to 5- hydroxymethylfurfural (HMF) and furfural, respectively. These compounds are characterized by inhibiting the yeast used in the fermentation step, which influences the microbial metabolism and the conversion of hexoses and pentoses obtained in ethanol. In this context, the aim of this work was to evaluate the ability of a yeast strain, from the species Dekkera bruxellensis (CCA155) in producing ethanol from sugarcane bagasse hydrolysates, since it has shown to be a yeast tolerant to adverse conditions found in industrial fermentation processes. The results indicated that D. bruxellensis was capable of producing ethanol in a synthetic medium containing xylose or arabinose, and xylose or glucose as sole carbon sources, and when grown in concentrations of 50 or 100% sugarcane bagasse hydrolyzate, maximum specific speeds growth was similar, about 0.009 h-1, with cell productivity of about 0.035 gL-1h-1. In the bioreactor tests, the yeast displayed low specific growth rate during the first five days, 0.003 h-1, caused by a slow consumption of glucose. But in a second phase of growth, with a lower rate 0.001 h-1, there was an increase in xylose consumption, a period in that an increase in ethanol concentration with maximum yield of approximately 3.25 mg/L.h was observed. Therefore even with lower growth when compared to yeast fermentation conventionally used in ethanol industries, these results suggest the feasibility of the cultivation of D. bruxellensis in hydrolysates of sugarcane bagasse. / O bioetanol é um combustível alternativo, de baixo custo o qual convencionalmente é obtido no Brasil a partir da fermentação de caldo de cana-de-açúcar, melaço ou a mistura destes. Entretanto, alternativamente, o etanol poderia ser obtido a partir de materiais lignocelulósicos, resíduos ou subprodutos agroindustriais compostos por celulose, hemicelulose e lignina, tais como o bagaço de cana-de-açúcar. Para cada tonelada de cana processada, são obtidos, em média, 250 kg de bagaço, o qual é geralmente queimado para geração de energia na indústria. Os cultivos microbianos a partir destas matérias-primas dependem da disponibilização dos substratos, nesse sentido, a hidrólise ácida tem sido referida como um dos processos mais utilizados para a despolimerização da fração hemicelulósica dos materiais lignocelulósicos, devido ao seu baixo custo e alta eficiência. No entanto, em condições de alta pressão e temperatura, glicose e xilose liberadas são degradadas a 5-hidroximetilfurfural (HMF) e furfural, respectivamente. Estes compostos são caracterizados por inibirem as leveduras utilizadas na etapa de fermentação, o que influencia o metabolismo microbiano e a conversão das hexoses e pentoses obtidas em etanol. Neste contexto, o trabalho consistiu em avaliar a capacidade de uma linhagem da levedura Dekkera bruxellensis em produzir etanol a partir de pré-hidrolisados de bagaço de cana-de-açúcar, já que a mesma tem mostrado ser uma levedura tolerante a condições adversas encontradas em processos fermentativos industriais. Os resultados indicaram que D. bruxellensis foi capaz de produzir etanol em meio sintético contendo xilose ou arabinose, ou ainda xilose e glicose como únicas fontes de carbono, e quando cultivadas em concentrações de 50 ou 100% de pré-hidrolisado de bagaço de cana-de-açúcar, as velocidades específicas de crescimento máximas foram semelhantes, em torno de 0,009 h-1, com produtividade celular de aproximadamente 0,035 g.L-1 h-1. Os ensaios em biorreator demonstraram baixas velocidades específicas de crescimento nos primeiros cinco dias, 0,003 h-1, ocasionado por um lento consumo de glicose. Porém em uma segunda fase de crescimento, com velocidade específica menor 0,001 h-1, ocorreu um aumento no consumo de xilose, período que também se observou aumento na concentração de etanol com produtividade máxima de aproximadamente 3,25 mg/L.h. Portanto apesar de crescimento inferior quando comparado às leveduras convencionalmente usadas na fermentação etanólica industrial, estes resultados sugerem a viabilidade de cultivo da D. bruxellensis CCA155 em pré-hidrolisados de bagaço de cana-de-açúcar.
8

Fisiologia molecular da levedura Dekkera bruxellensis

Leite, Fernanda Cristina Bezerra 29 February 2012 (has links)
Submitted by Chaylane Marques (chaylane.marques@ufpe.br) on 2015-03-13T19:43:51Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Leite(2012)_Tese Doutorado.pdf: 1676156 bytes, checksum: a0b7f1a26ca74955f4df21cc6a466fe0 (MD5) / Made available in DSpace on 2015-03-13T19:43:51Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Leite(2012)_Tese Doutorado.pdf: 1676156 bytes, checksum: a0b7f1a26ca74955f4df21cc6a466fe0 (MD5) Previous issue date: 2012-02-29 / FACEPE / A levedura Dekkera bruxellensis tem sido identificada como principal contaminante do processo industrial de produção de álcool combustível e em vinícolas, mas estudos recentes mostraram que linhagens desta espécie podem apresentar rendimentos em etanol comparáveis aos mostrados por Saccharomyces cerevisiae, o principal microrganismo fermentador. Apesar de ter se mostrado um microrganismo bastante atrativo para aplicações industriais, poucos trabalhos têm sido dedicados ao estudo de sua fisiologia. Este trabalho teve por objetivo descrever a fisiologia da linhagem industrial da levedura D. bruxellensis GDB 248 quanto ao seu metabolismo de açúcares e o efeito repressor que a glicose exerce sobre o metabolismo do carbono. Foram realizados cultivos em frascos em diferentes fontes de carbono e em quimiostatos limitados em glicose ou sacarose. Nos experimentos em frascos com hexoses ou dissacarídeos, valores para taxas de crescimento e rendimentos em etanol e acetato foram calculados e nenhuma formação de piruvato, succinato ou glicerol foi observada. A análise elementar da biomassa de D. bruxellensis resultou na composição elementar CH1.754O0.583N0.149e o grau de redução (Nox) para esta biomassa se mostrou muito próximo ao descrito para a biomassa de S. cerevisiae. Nos experimentos em regime de quimiostato, o metabolismo desta levedura foi completamente respiratório e todo o açúcar consumido (glicose ou sacarose) foi convertido em apenas biomassa atingindo rendimento cerca de 25% maior que o observado para S. cerevisiae. Além disso, pulsos de glicose foram aplicados aos quimiostatos limitados em glicose ou sacarose e os resultados mostraram que as células de D. bruxellensis apresentam o efeito Crabtree observado pela rápida produção de etanol, mesmo em presença de oxigênio. No pulso de glicose aplicado ao quimiostato limitado em sacarose, foi observado o acúmulo de sacarose no reator, indicando a presença de mecanismo de repressão catabólica por glicose nestas células. Para avaliar o efeito repressor da glicose, a expressão relativa do gene DbFBP1 foi analisada por PCR em tempo real e foi observado que este gene está sujeito a uma forte regulação repressora exercida pela proteína quinase A em resposta a disponibilidade de glicose. Os dados deste trabalho possibilitaram uma melhor compreensão acerca da capacidade de conversão de diferentes açúcares a etanol, apesar da tendência ao metabolismo respiratório apresentado pelas células de D. bruxellensis e ainda foram gerados os primeiros dados a cerca do efeito repressor da glicose sobre o metabolismo destas fontes de carbono. Por fim, diante da escassez de dados genômicos para esta espécie, foi realizado um estudo para validar genes de referência para normalização de dados de ensaios de expressão gênica por PCR em tempo real. Os resultados mostraram que os genes DbEFA1, DbEFB1 e DbYNA1 são suficientemente estáveis para esta aplicação e que o método geNorm é, de fato, o mais adequado para esta análise.

Page generated in 0.0624 seconds