• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bioethanol as renewable transportation fuel for the future

La Grange, Daniel Coenrad 12 1900 (has links)
Thesis (MBA (Business Management))--University of Stellenbosch, 2007. / ENGLISH SUMMARY: Fossil fuel has been the preferred source for the production of transportation fuel for many years. However, this is not a renewable resource. Many conflicting reports have been published as to how long this resource will last. One thing is certain: eventually the supply of cheap crude oil will run out. It is therefore crucial to start the search for renewable alternatives now. There are a number of possible candidates vying for replacing fossil fuel as primary transportation fuel. Hydrogen, methanol, biodiesel and bioethanol all have the characteristics required of a good transportation fuel. It is unlikely that only one of these will replace oil. A more likely scenario would be that they all play a role in transportation in the future. Apart from being renewable, these alternatives have the further advantage of being less damaging to the environment, something that will become essential in future. Among the renewable alternatives, bioethanol has the second highest energy density. Currently, ethanol production worldwide almost exclusively uses sugarcane and maize as raw material. However, both these are food crops and using them for ethanol could lead to an increase in food prices. Furthermore, there is not enough agricultural land available to produce sufficient quantities of sugarcane and maize for ethanol to replace fossil fuel. Producing ethanol from plant material has the potential to meet the capacity requirements without impacting directly on food production. Approximately 180 million tons of agricultural biomass are produced in the United States each year, sufficient to produce 75 to 110 billion litres of ethanol. Despite its abundance, the technical challenges in converting cellulose to ethanol are significant. One major obstacle to the production of ethanol out of plant material is that most of the sugar in plant material is unavailable for fermentation by micro-organisms. In order to render the sugars in the cellulose fraction accessible to conversion, it is necessary to treat the plant fibres with a combination of chemical and enzymatic processes. Only when a complex mixture of enzymes is used, does it become possible to break down cellulose to glucose for subsequent fermentation to ethanol. Biomass processing by means of enzymes currently involves four separate biological steps: (i) production of enzymes (cellullases and hemicellulases), (ii) hydrolysis of cellulose and hemicellulose to sugars, (iii) fermentation of hexose sugars and (iv) fermentation of pentose sugars. Consolidated BioProcessing (CBP) will combine all these steps into one. However, CBP is not yet possible and the magnitude of research and developmental advancement required to realize this goal is significant. Both sugar and starch ethanol technologies are well established and major process advances are therefore unlikely. Currently there are no commercial-sized plants for the production of ethanol from lignocellulosics, however this is likely to change in the near future considering the progress made in this field during recent years. This study will focus on the current status of the bioethanol industry, as well as on the potential for future development. / AFRIKAANSE OPSOMMING: Fossielbrandstof was vir baie jare die hoofbron vir die produksie van brandstof vir die vervoerbedryf. Fossielbrandstof is nie ’n hernubare energiebron nie en daar is al baie gespekuleer oor presies hoe lank daar nog goedkoop olie beskikbaar sal wees. Baie min van die gepubliseerde bronne stem ooreen, maar almal is dit eens dat olie op een of ander stadium sal opraak. Om hierdie rede is dit noodsaaklik om nou reeds te soek na alternatiewe. Daar is ’n hele aantal hernubare alternatiewe wat gebruik kan word in die plek van olie. Waterstof, metanol, biodiesel en bioetanol beskik almal oor die nodige eienskappe om ’n effektiewe vervoerbrandstof te wees. Die hoofvoordeel van hierdie brandstowwe is dat hulle minder skadelik is vir die omgewing as olie, ’n eienskap wat baie belangrik sal wees in die toekoms. Die kans is eger skraal dat een van bogenoemde bronne die mark totaal sal oorheers soos wat olie tot op hede oorheers het. ’n Meer waarskynlik uitkoms sou wees dat al hierdie bronne op een of ander manier ’n rol gaan speel in die vervoerbedryf in die toekoms. Etanol het die tweede hoogste energie digtheid van die vier genoemde hernubare brandstowwe. Etanol word tans uitsluitlik van suikerriet en mielies geproduseer. Beide suikerriet en mielies is voedselgewasse en die gebruik daarvan vir brandstof kan lei tot ’n toename in voedselpryse. Daar is ook nie genoeg landbougrond beskikbaar vir die verbouing van suikerriet en mieles sodat genoeg etanol geproduseer kan word om fosielbranstof te vergang nie. Die vervaardiging van etanol vanaf lignosellulose het die potensiaal om etanolkapasiteitprobleme te oorkom sonder om direk met voedselproduksie te kompeteer. Ongeveer 180 miljoen ton landbouafval word jaarliks in die Verenigde State geproduseer, genoeg vir die vervaardiging van tussen 75 en 110 biljoen liter etanol. Die tegniese kompleksiteit gekoppel aan die omskakeling van sellulose na etanol is beduidend. Die belangrikste hindernis vir die produksie van etanol vanaf plantmateriaal is die feit dat die meeste van die suiker nie beskibaar is vir fermentasie deur mikroörganismes nie. Plantvesels moet daarom met ’n kombinasie van chemikalieë en ensieme behandel word om sodoende die suiker beskikbaar te maak vir omskakeling. Sellulose kan slegs met ’n komplekse mengsel van ensieme afgebreek word tot glukose wat dan daarna gefermenteer kan word tot etanol. Die verwerking van biomassa met behulp van ensieme behels tans vier afsonderlike biologiese stappe: (i) ensiemproduksie (sellulases en hemisellulases), (ii) hidrolise van sellulose en hemisellulose tot fermenteerbare suikers, (iii) fermentasie van heksose suikers en (iv) fermentasie van pentose suikers. Consolidate BioProcessing (CBP) poog om al vier hierdie stappe te kombineer. Ongelukkig is die CBP proses nog nie moontlik nie en daar moet nog baie navorsing en ontwikkeling gedoen word om dit ’n realiteit te maak. Beide die metodes vir suiker- en styseletanolproduksie is goed gevestig, dus is die kans vir beduidende verbeteringe klein. Daar is tans geen aanlegte van kommersiële grootte vir die produksie van etanol vanaf lignocellulose nie, maar dit gaan waarskynlik binnekort verander as ’n mens die vordering in ag neem wat daar onlangs gemaak is in hierdie veld. Hierdie studie fokus op die huidige stand van sake in die etanolbedryf en die ontwikkelingsmoontlikhede vir die toekoms.

Page generated in 0.234 seconds