Spelling suggestions: "subject:"ferroelectric thin films"" "subject:"ferroelectric thin wilms""
31 |
Growth and Properties of (001)-oriented Pb(Zr₀.₅₂Ti₀.₄₈)O₃/LaNiO₃ Films on Si(001) Substrates with TiN Buffer LayersZhu, Tie-Jun, Lu, Li, Thompson, Carl V. 01 1900 (has links)
Pulsed laser deposition has been used to grow Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT)/LaNiO₃ (LNO) heterostructures with restricted crystallographic orientations on bare Si(001) and SiO₂-coated Si(001) substrates, using TiN buffer layers. The effect of background gas pressure on orientation of the thin films was investigated in detail. XRD analyses showed that under optimized conditions, (001)-oriented PZT/LNO/TiN heterostructures could be grown on either Si(001) or SiO₂/Si substrates. The (001)-textured PZT films had remnant polarizations as high as 23µC/cm², and also had a low coercive field. Up to 10¹⁰ switching cycles have been achieved in these PZT films. / Singapore-MIT Alliance (SMA)
|
32 |
High-density capacitor array fabrication on silicon substratesSethi, Kanika 19 November 2010 (has links)
System integration and miniaturization demands are driving integrated thin film capacitor technologies with ultra-high capacitance densities for power supply integrity and efficient power management. The emerging need
for voltage conversion and noise-free power supply in bioelectronics and portable consumer products require ultra high-density capacitance of above 100 μF/cm2 with BDV 16-32 V ,independent capacitor array terminals and non-polar dielectrics. The aim of this research,therefore, is to explore a new silicon- compatible thin film nanoelectrode capacitor technology that
can meet all these demands. The nanoelectrode capacitor paradigm has two unique advances. The first advance is to achieve ultra-high surface area thin film electrodes by sintering metallic particles directly on a silicon substrate at CMOS- compatible temperatures. The second advance of this study is to conformally- deposit medium permittivity dielectrics over such particulate nanoelectrodes using Atomic Layer Deposition (ALD) process.
Thin film copper particle nanoelectrode with open-porous structure was achieved by choosing a suitable phosphate-ester dispersant, solvent and a
sacrificial polymer for partial sintering of copper particles to provide a continuous high surface area electrode. Capacitors with conformal ALD alumina as the dielectric and Polyethylene dioxythiophene (PEDT) as the top electrode showed 30X enhancement in capacitance density for a 20-30
micron copper particulate bottom electrode and 150X enhancement of capacitance density for a 75 micron electrode. These samples were tested
for their mechanical and electrical properties by using characterization techniques such as SEM, EDS, I-V and C-V plots. A capacitance density of
30 μF/cm2 was demonstrated using this approach.
The technology is extensible to much higher capacitance densities with better porosity control, reduction in particle size and higher
permittivity dielectrics.
|
33 |
Degradation in lead zirconate titanate thin film capacitors for non-volatile memory applicationsBhattacharya, Mayukh 05 September 2009 (has links)
A study of the degradation of ferroelectric properties in Lead Zirconate Titanate (PZT) thin film capacitors is presented in this work. Metal- Ferroelectric - Metal capacitors were prepared by sputtering and metal organic decomposition (MOD) techniques. Samples with several different film thicknesses were considered in this study. Depolarization, leading to imprint has been studied at various temperatures. Changes in the dielectric properties of the capacitors as a function of the number of fatigue cycles is presented.
Impedance and modulus spectroscopic techniques have been applied to study the effect of degradation on the ferroelectric thin film. It has been shown that with accurate low frequency impedance measurement equipment, new insight can be gained on the mechanisms of degradation in ferroelectric capacitors. / Master of Science
|
34 |
Ferromagnetic and multiferroic thin films aimed towards optoelectronic and spintronic applicationsZaidi, Tahir 24 May 2010 (has links)
This work targeted the growth of gadolinium (Gd)-doped gallium nitride (GaN) thin films (Ga₁₋ₓGdₓN) by metal organic chemical vapor deposition (MOCVD). Characterization and evaluation of these Ga₁₋ₓGdₓN thin films for application in spintronics/optoelectronics devices also formed part of this work. This work presents: (1) the first report of stable, reproducible n- and p-type Ga₁₋ₓGdₓN thin films by MOCVD; (2) the first Ga₁₋ₓGdₓN p-n diode structure; and (3) the first report of a room temperature spin-polarized LED using a Ga₁₋ₓGdₓN spin injection layer. The Ga₁₋ₓGdₓN thin films grown in this work were electrically conductive, and co-doping them with Silicon (Si) or Magnesium (Mg) resulted in n-type and p-type materials, respectively. All the materials and structures grown in this work, including the Ga₁₋ₓGdₓN-based p-n diode and spin polarized LED, were characterized for their structural, optical, electrical and magnetic properties. The spin-polarized LED gave spin polarization ratio of 22% and systematic variation of this ratio at room temperature with external magnetic field was observed.
|
35 |
Optimisation de dispositifs hyperfréquences reconfigurables : utilisation de couches minces ferroélectriques KTN et de diodes varactor / Optimization of tunable microwave devices : using KTN ferroelectric thin films and varactor diodesMekadmini, Ali 18 November 2013 (has links)
La croissance rapide du marché des télécommunications a conduit à une augmentation significative du nombre de bandes de fréquences allouées et à un besoin toujours plus grand en terminaux offrant un accès à un maximum de standards tout en proposant un maximum de services. La miniaturisation de ces appareils, combinée à la mise en place de fonctions supplémentaires, devient un vrai challenge pour les industriels. Une solution consiste à utiliser des fonctions hyperfréquences accordables (filtres, commutateurs, amplificateurs,…). A ce jour, trois technologies d'accord sont principalement utilisées : capacités variables, matériaux agiles ou encore MEMS RF. Dans le cadre de cette thèse, nous avons travaillé sur l’optimisation de dispositifs hyperfréquences reconfigurables en utilisant des couches minces ferroélectriques KTN et des diodes varactor. Nos premiers travaux étaient relatifs à l’optimisation des dispositifs hyperfréquences accordables à base de couche minces KTN. Dans ce sens, nous avons tout d’abord caractérisé le matériau KTN en basse et haute fréquence afin de déterminer ses caractéristiques diélectriques et ses caractéristiques en température. Nous avons ensuite réalisé des dispositifs hyperfréquence élémentaires tels des capacités interdigitées et des déphaseurs à base de KTN. Leurs performances ont alors été comparées aux mêmes dispositifs réalisés cette fois à base de la solution la plus utilisée BST. Bien qu’un léger avantage soit acquis à la solution BST, il n’en reste pas moins vrai que les résultats avec le matériau KTN sont très proches indiquant que cette voie peut également, après optimisation, apporter une alternative au BST. La seconde partie de nos travaux concerne la réalisation de filtres planaires accordables en fréquence à base de matériaux KTN et de diodes varactor. Nous avons ainsi réalisé deux filtres passe-bande accordables. Un premier filtre passe-bande de type « open loop » possédant deux pôles agiles en fréquence centrale et un second filtre passe-bande de type SIR rendant possible l’accord de sa fréquence centrale ainsi que de sa bande passante à partir de diodes varactor. Lors de la conclusion sur nos travaux, nous évoquons les suites à donner à ce travail et les perspectives. / The rapid growth of the telecommunications industry has led to a significant increase in the number of allocated frequency bands and a growing need for terminals providing access to an increasing number of standards while offering maximum services. The miniaturization of these devices combined with the implementation of additional functions has become a real challenge for the industry. The use of tunable microwave functions (filters, switches, amplifiers ...) appears as a solution to this issue. In this way, three main technologies are mainly used: variable capacitors, tunable materials and RF MEMS. Within the scope of this thesis work, our investigations focused on tunable microwave devices optimization through the use of KTN ferroelectric thin films and varactor diodes. The first part of our study deals with the optimization of tunable microwave devices based on KTN ferroelectric thin films. In this way, we initially characterized KTN material in low and high frequency to determine its dielectric properties and characteristics according to the temperature. Then, we designed basic microwave devices such as interdigitated capacitors and phase shifters based on KTN thin films. Their performances were then compared with BST solution. Despite results highlighting a slight advantage to BST solution, KTN material, after optimization process, could be a BST alternative solution. In a second part, our work focused on the realization of tunable planar filters based on KTN materials and varactor diodes. We made two tunable bandpass filters. The first one is a center frequency tunable bandpass two pole open loop filter and the second one is a center frequency and bandwidth tunable SIR bandpass filter using varactor diodes. Finally, we discussed follow-up to give to this work and outlooks.
|
36 |
Study Of Pulsed Laser Ablated Barium Strontium Titanate Thin Flims For Dynamic Random Access Memory ApplicationsSaha, Sanjib 08 1900 (has links)
The present study describes the growth and characterization of pulsed laser ablated Bao.sSro.sTiOs (BST) thin films. Emphasis has been laid on the study of a plausible correlation between structure and property in order to optimize the processing parameters suitably for required application. An attempt has been made to understand the basic properties such as, origin of dielectric response, charge transfer under low and high-applied electric fields across the BST capacitor and finally the dielectric breakdown process.
Chapter 1 gives a brief introduction on the application of ferroelectric thin films in microelectronic industry and its growth techniques. It also addresses the present issues involved in the introduction of BST as a capacitor material for high-density dynamic random access memories. Chapter 2 outlines the motivation for the present study and briefly outlines the research work involved.
Chapter 3 describes the experimental procedure involved in the growth and characterization of BST thin films using pulsed laser ablation technique. Details include the setup design for PLD growth, material synthesis for the ceramic targets, deposition conditions used for thin film growth and basic characterizations methods used for study of the grown films.
Chapter 4 describes the effect of systematic variation of deposition parameters on the physical and electrical properties of the grown BST films. The variation in processing conditions has been found to directly affect the film crystallinity, structure and morphology. The change observed in these physical properties may also be correlated to the observed electrical properties. This chapter summarizes the optimal deposition conditions required for growing BST thin films using a pulsed laser ablation technique.
Microstructure of BST films has been categorized into two types: (a) Type I structure, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing (exsitu crystallized), and (b) columnar structure (Type II) films, which were as-grown well-crystallized films, deposited at high temperatures.
The ac electrical properties have been reviewed in detail in Chapter 5. Type I films showed a relatively lower value of dielectric constant (e ~ 426) than Type II films with dielectric constant around 567. The dissipation factors were around 0.02 and 0.01 for Type I and Type II films respectively. The dispersion in the frequency domain characteristics has been quantitatively explained using Jonscher's theory. Complex impedance spectroscopy employed showed significant grain boundary response in the case of multi-grained Type I films while negligible contribution from grain boundaries has been obtained in the case of columnar grained Type II BST films. The average relaxation time r obtained from the complex impedance plane plots show almost three orders higher values for Type I films. The obtained results suggest that in multi-grained samples, grain boundary play a major role in electrical properties. This has been explained in accordance to a model proposed on the basis of depleted grains in the case of Type I films where the grain sizes are smaller than the grain boundary depletion width.
Chapter 6 describes the dc leakage properties of the grown BST thin films and the influence of microstructure on the leakage properties. It was evident from the analysis of the graph of leakage current against measurement temperature, that, the observed leakage behavior in BST films, can not be attributed to a single charge transport mechanism. For Type I films, the Arrhenius plot of the leakage current density with 1000/T exhibits different regions with activation energy values in the range of 0.5 and 2.73 for low fields (2.5kV/cm). The activation energy changes over to 1.28 eV at high fields (170 kV/cm). The obtained values agree well with that obtained from the ac measurements, thus implying a similarity in the origin of the transport process. The activation energy value in the range of 0.5 eV is attributed to the electrode/film Schottky barrier, while the value in the range of 2.73 eV is due to deep trap levels originating from Ti+3 centers. The value in the range of 1.28 eV has been attributed to oxygen vacancy motion. Similar results have been obtained from the Arrhenius plot of the leakage current for Type II films. In this case, only two different activation energy values can be identified in the measured temperature and applied electric field range. At low fields the activation energy value was around 0.38 eV while at high fields the value was around 1.06 eV. These values have been identified to be originating from the electrode/film Schottky barrier and oxygen vacancy motion respectively. Thus a complete picture of the charge transport process in the case of BST thin film may be summarized as comprising of both electronic motion as well as contribution from oxygen vacancy motion.
The effect of electrical stress on the capacitance-voltage (C-V) and the leakage current has been analyzed in Chapter 7. From the change in the zero bias capacitance after repeated electron injection through the films the values of the electronic capture cross-section and the total trap density for Type I and II films have been estimated. The results showed higher values for Type I film in comparison to Type II films. The difference has been attributed to the presence of grain boundaries and a different interface in the case of Type I films when compared to Type II films where the absence of grain boundaries is reflected in the columnar microstructure. A study of the time-dependent-dielectric-breakdown (TDDB) characteristics under high fields for Type I and Type II films showed higher endurance for Type I film. On the other hand space-charge-transient characteristics have been observed in the case of Type II films at elevated temperature of measurement. Mobility and activation energy values extracted from the transient characteristics are found to be in the range of 1 x 10~12 cm2 /V-sec and 0.73 eV respectively, suggesting a very slow charge transport process, which has been attributed to the motion of oxygen vacancies. An overall effect of electrical stress suggested that oxygen vacancy motion can be related to the observed resistance degradation and TDDB, which has been further enhanced by the combination of high temperature and high electric fields.
Chapter 8 deals with the effect of intentional doping in the BST films. The doping includes Al at the Ti-site, Nb in the Ti-site and La at the Ba/Sr-site. The effect of doping was observed both on the structure and electrical properties of the BST films. Acceptor doping of 0.1 atomic 7c Al was found to decrease the dielectric constant as well as the leakage current. For higher concentration of acceptor-dopant, the leakage current was found to increase while showing space-charge-transient in the TDDB characteristics, again suggesting the effect of increased concentration of oxygen vacancies. Donor doping using 2 atomic % La and Xb significantly improved the leakage as well as the TDDB characteristics by reducing the concentration of oxygen vacancies. A further procedure using graded donor doping in the BST films exhibits even better leakage and TDDB properties. An unconventional, graded doping of donor cations has been carried out to observe the impact on leakage behavior, in particular. The leakage current measured for a graded La-doped BST film show almost six orders of lower leakage current in comparison to undoped BST films, while endurance towards breakdown has been observed to increase many-fold.
Chapter 9 highlights the main findings of the work reported in this thesis and lists suggestions for future work, to explore new vistas ahead.
|
37 |
High density and high reliability thin film embedded capacitors on organic and silicon substratesKumar, Manish 20 November 2008 (has links)
With the digital systems moving towards higher frequencies, lower operating voltages and higher power, supplying the required current at the right voltage and at the right time to facilitate timely switching of the CMOS circuits becomes increasingly challenging. The board level power supply cannot meet these requirements directly due to the high inductance of the package interconnections. To overcome this problem, several thin film decoupling capacitors have to be placed on the IC or close to the IC in the package. Two approaches were pursued for high-k thin film decoupling capacitors.
1) Low cost sol-gel based thin film capacitors on organic board compatible Cu-foils
2) RF-sputtered thin film capacitors on silicon substrate for silicon compatible processes
While sol-gel provides cost effective technology, sputtered ferroelectric devices are more compatible from manufacturing stand point with the existing technology. Nano-crystalline barium titanate and barium strontium titanate film capacitor devices were fabricated and characterized for organic and silicon substrates respectively.
Sol-gel barium titanate films were fabricated first on a bare Cu-foil and then transferred to organic board through a standard lamination process. With process optimization and film doping, a capacitance density of 3 µF/cm2 was demonstrated with breakdown voltage greater than 12V. Leakage current characteristics, breakdown voltages, and electrical reliability of the devices were significantly improved through doping of the barium titanate films and modified film chemistry. Films and interfaces were characterized with high resolution electron microscopy, SEM, XRD, and DC leakage measurements.
RF sputtering was selected for ferroelectric thin film integration on silicon substrate. Barium strontium titanate (BST) films were deposited on various electrodes sputtered on silicon substrates. The main focus was to improve interface stabilities for high-k thin films on Si to yield large-area defect-free devices. Effect of bottom electrode selection and barrier layers on device yield and performance were investigated carefully. High yield and high device performance was observed for certain electrode and barrier layer combination. A capacitance density up to 1 µF/cm2 was demonstrated with a breakdown voltage above 15 V on large area, 7 mm2, devices.
These two techniques can potentially meet mid-high frequency future decoupling requirements.
|
38 |
Dispositifs hyperfréquences et antennes périodiques reconfigurables à base de films minces ferroélectriques des systèmes KTN-KNN / Tunable microwave devices and periodic antennas based on ferroelectric thin films in the KTN-KNN systemsCissé, Fatou 04 July 2017 (has links)
Ce travail concerne la réalisation et la caractérisation de dispositifs hyperfréquences agiles en fréquence à base du matériau ferroélectrique KTa1-xNbxO3 (KTN) déposé en couche mince. Doté d'une permittivité diélectrique élevée (er = 700 à 10 GHz et Ebias = 0 kV/cm), KTN est un candidat prometteur pour la reconfigurabilité et la miniaturisation des dispositifs hyperfréquences. Ses pertes restent néanmoins conséquentes (tanδr = 0,3 à 10 GHz et Ebias = 0 kV/cm) et sont en partie à l'origine des pertes globales des dispositifs hyperfréquences réalisés. Afin de limiter ces pertes, une double approche a été engagée : (1) réduction des pertes diélectriques par le dopage du matériau KTN par un oxyde à faibles pertes : MgO à 3% et 6% en moles et (2) réduction des pertes globales par le confinement du matériau KTN dopé dans les zones actives des dispositifs hyperfréquences. Les couches minces de KTN non dopé et dopé d'épaisseur ~ 600 nm ont été déposées sur substrats de saphir orienté R par ablation laser pulsé (PLD). Deux compositions différentes (KTa0,5Nb0,5O3 et KTa0,65Nb0,35O3) ont été sélectionnées pour cette étude. Des dispositifs coplanaires imprimés sur les films ferroélectriques ont été réalisés et caractérisés dans la bande d'intérêt 1 GHz-20 GHz. Le dopage à 6% assure le meilleur compromis pertes / agilité avec une réduction significative des pertes globales de 0,73 à 0,20 (facteur ~ 4) du dispositif résonant imprimé sur KTa0,5Nb0,5O3 après son confinement par microgravure laser. Une agilité en fréquence de 8% est obtenue sous Ebias ≈ 75 kV/cm. L'étude d'une antenne à ondes de fuite reconfigurable en bande Ku a ensuite été mise en oeuvre. Les couches minces de KTa0,5Nb0,5O3 d'épaisseur ~ 600 nm ont été déposées par PLD sur substrats de saphir R, puis le matériau ferroélectrique a été localisé par microgravure laser dans les 6 zones actives de l'antenne (constituée de 6 tronçons). L’évolution du coefficient de réflexion sous Ebias ≈ 85 kV/cm montre une agilité en fréquence égale à 2%. Un gain maximal de 6,7 dBi a été mesuré à f = 17 GHz et Ebias = 0 kV/cm, conformément aux résultats de simulation. / This work deals with the fabrication and characterization of frequency tunable microwave devices based on ferroelectric KTa1-xNbxO3 (KTN) thin films. KTN material is a promising candidate for the tunability and miniaturization of microwave devices, due to its high dielectric permittivity (er= 700 at 10 GHz and Ebias= 0 kV/cm). Nevertheless its intrinsic loss (tanδr= 0.3 at 10 GHz and Ebias= 0 kV/cm) strongly impacts the global loss of the tunable microwave devices. To reduce this, a twofold solution has been investigated: (1) reduction of the loss tangent by doping KTN material with a low loss oxide, namely MgO (3% and 6% in mol.) and (2) confinement of the doped KTN film in efficient regions of the microwave devices and removal in noncritical areas by laser microetching. The ~ 600 nm-thick undoped and doped KTN films have been grown by Pulsed Laser Deposition (PLD) on R-plane sapphire substrates. Two different compositions (KTa0.5Nb0.5O3 and KTa0.65Nb0.35O3) were specifically selected for this study. Microwave measurements have been performed on KTN-based coplanar devices from 1 GHz to 20 GHz. Stub resonator printed on confined 6% doped KTa0.5Nb0.5O3 film exhibits the best loss/agility trade-off with a significant global loss reduction from 0.73 to 0.20 (factor ~ 4) with a 8% frequency tunability under Ebias≈ 75 kV/cm.Thereafter, the study of a reconfigurable Ku-band leaky-wave antenna has been carried out. A ~600 nm-thick KTa0.5Nb0.5O3 film was deposited by PLD on R-plane sapphire substrate. The ferroelectric material was localized by laser microetching on 6 specific areas of the antenna (consisted of 6 sections). The variation of the reflection coefficient under biasing (Ebias≈ 85 kV/cm) demonstrates a frequency tunability of 2%. A gain equal to 6.7 dBi has been measured at f= 17 GHz and Ebias= 0 kV/cm, in accordance with the numerical results.
|
39 |
Material perspectives of HfO₂-based ferroelectric films for device applicationsToriumi, Akira, Xu, Lun, Mori, Yuki, Tian, Xuan, Lomenzo, Patrick D., Mulaosmanovic, Halid, Materano, Monica, Mikolajick, Thomas, Schroeder, Uwe 20 June 2022 (has links)
Ferroelectric HfO₂ attracts a huge amount of attention not only for memory and negative capacitance, but also for programmable logic including memory-in-logic and neuromorphic applications. However, the understanding of material fundamentals still needs to be improved. This paper gives material fundamentals and new insights to this ferroelectric material for future device applications. In particular, the key role of dopants, effects of the interface on the ferroelectric phase, and a detailed discussion of the switching kinetics are of central focus. Based on material properties newly obtained, we discuss opportunities of ferroelectric HfO₂ for device applications.
|
40 |
Study Of Relaxor Ferroelectric PMN-PT Thin Films For Energy Harvesting ApplicationsSaranya, D 07 1900 (has links) (PDF)
The present research work mainly focuses on the fabrication of 0.85PMN-0.15PT thin film relaxor ferroelectrics for energy harvesting applications.
Chapter 1 gives a brief review about why energy harvesting is required and the different ways it can be scavenged. An introduction to relaxor ferroelectrics and their characteristics structural features are discussed. A brief introduction is given about charge storage, electrocaloric effect , DC-EFM and integration over Si substrate is discussed. Finally, the specific objectives of the current research are outlined.
Chapter 2 deals with the various experimental studies carried out in this research work. It gives the details of the experimental set up and the basic operation principles of various structural and physical characterizations of the materials prepared. A brief explanation of material fabrication, Microstructural and physical property measurements is discussed.
Chapter3 involves the optimization process carried out to contain a phase pure PMN-PT structure without any pyrochlore phase. The optimization process is an important step in the fabrication of a thin film as the quality of any device is determined by their structural and Microstructural features. XRD, SEM, AFM were used to characterize the observed phase formation in these films. The optimizing domain images of polycrystalline 0.85PMN-0.15PT thin films on La0.5Sr0.5CoO3/ (111) Pt/TiO2/SiO2/Si substrates deposited at different oxygen partial pressures are presented. The oxygen pressure has a drastic influence on the film growth and grain morphology which are revealed through XRD and SEM characterization techniques. The presence of oxygen vacancies have found to influence the distribution of polar nanoregions and their dynamics which are visualized using domain images acquired by DC-EFM
In Chapter 7 the piezoelectric response of 0.85PMN-0.15PT thin films are studied due to the electric field induced bias. From this the d33 value is calculated. d33 value is an important parameter which determines whether a material is suitable for device application (PZT). But, for a device fabrication it is important to integrate them with Si wafer which is not a straightforward work .Hence, buffer layers are used to obtain a pure perovskite PMN-PT film. We have deposited 0.85PMN-0.15PT thin films of 500 nm on a SOI wafer and tried to investigate their piezoelectric application.
Chapter 8 summarizes the present study and discusses about the future work that could give more insight into the understanding of the0.85PMN-0.15 PT relaxor ferroelectric thin film.
|
Page generated in 0.0781 seconds