• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molekularstrahlepitaxie und Charakterisierung von (Ga, Mn)As-Halbleiterschichten

Schott, Gisela Marieluise. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2004--Würzburg.
2

Herstellung und Charakterisierung von Mangan dotierten III-V-Halbleiterheterostrukturen

Wurstbauer, Ursula January 2008 (has links)
Regensburg, Univ., Diss., 2008.
3

Molekularstrahlepitaxie und Charakterisierung von (Ga,Mn)As Halbleiterschichten / Molecular beam eptiaxy and characterisation of (Ga,Mn)As semiconductor layers

Schott, Gisela Marieluise January 2004 (has links) (PDF)
In der Spintronik bestehen große Bemühungen Halbleiter und ferromagnetische Materialien zu kombinieren, um die Vorteile der hoch spezialisierten Mikroelektronik mit denen der modernen magnetischen Speichertechnologie zu verbinden. In vielen Bereichen der Elektronik wird bereits der III-V Halbleiter GaAs eingesetzt und ferromagnetisches (Ga,Mn)As könnte in die vorhandenen optischen und elektronischen Bauteile integriert werden. Deshalb ist eine intensive Erforschung der kristallinen Qualität, der elektrischen und magnetischen Eigenschaften von (Ga,Mn)As-Legierungsschichten von besonderem Interesse. Wegen der niedrigen Löslichkeit der Mangan-Atome in GaAs, muss (Ga,Mn)As außerhalb des thermodynamischen Gleichgewichtes mit Niedertemperatur-Molekularstrahl-Epitaxie hergestellt werden, um eine ausreichend hohe Konzentration an magnetischen Ionen zu erreichen. Dieses Niedertemperatur-Wachstum von Galliumarseniden verursacht Schwierigkeiten, da unerwünschte Defekte eingebaut werden können. Die Art der Defekte und die Anzahl ist abhängig von den Wachstumsparametern. Vor allem das überschüssige Arsen beeinflusst neben dem Mangan-Gehalt die Gitterkonstante und führt zu einer starken elektrischen und magnetischen Kompensation des (Ga,Mn)As Materials. Abhängig von den Wachstumsparametern wurden Eichkurven zur Kalibrierung des Mangan-Gehaltes aus Röntgenbeugungsmessungen, d. h. aus der (Ga,Mn)As-Gitterkonstanten bestimmt. Um ein besseres Verständnis über die Einflüsse der Wachstumsparameter neben dem Mangan-Gehalt auf die Gitterkonstante zu bekommen, wurden Probenserien gewachsen und mit Röntgenbeugung und Sekundärionen-Massenspektroskopie untersucht. Es wurde festgestellt, dass der Mangan-Gehalt, unabhängig von den Wachstumsparametern, allein vom Mangan-Fluss bestimmt wird. Die Gitterkonstante hingegen zeigte eine Abhängigkeit von den Wachstumsparametern, d. h. von dem eingebauten überschüssigen Arsen in das (Ga,Mn)As-Gitter. Im weiteren wurden temperaturabhängige laterale Leitfähigkeitsmessungen an verschiedenen (Ga,Mn)As-Einzelschichten durchgeführt. Es ergab sich eine Abhängigkeit nicht nur von dem Mangan-Gehalt, sondern auch von den Wachstumsparametern. Neben den Leitfähigkeitsmessungen wurden mit Kapazitäts-Messungen die Ladungsträgerkonzentrationen an verschiedenen (Ga,Mn)As-Schichten bestimmt. Es konnten Wachstumsbedingungen gefunden werden, bei der mit einem Mangan-Gehalt von 6% eine Ladungsträgerkonzentration von 2 · 10^(21) cm^(-3) erreicht wurde. Diese Schichten konnten reproduzierbar mit einer Curie-Temperatur von 70 K bei einer Schichtdicke von 70 nm hergestellt werden. Mit ex-situ Tempern konnte die Curie-Temperatur auf 140 K erhöht werden. Neben (Ga,Mn)As-Einzelschichten wurden auch verschiedene (GaAs/MnAs)- Übergitterstrukturen gewachsen und mit Röntgenbeugung charakterisiert. Ziel was es, Übergitter herzustellen mit einem hohen mittleren Mangan-Gehalt, indem die GaAs-Schichten möglichst dünn und die MnAs-Submonolagen möglichst dick gewachsen wurden. Dünnere GaAs-Schichten als 10 ML Dicke führten unabhängig von der Dicke der MnAs-Submonolage und den Wachstumsparametern zu polykristallinem Wachstum. Die dickste MnAs-Submonolage, die in einer Übergitterstruktur erreicht wurde, betrug 0.38 ML. Übergitterstrukturen mit nominell sehr hohem Mangan-Gehalt zeigen eine reduzierte Intensität der Übergitterreflexe, was auf eine Diffusion der Mangan-Atome hindeutet. Der experimentelle Wert der Curie-Temperatur von (Ga,Mn)As scheint durch die starke Kompensation des Materials limitiert zu sein. Theoretische Berechnungen auf der Grundlage des ladungsträgerinduzierten Ferromagnetismus besagen eine Erhöhung der Curie-Temperatur mit Zunahme der Mangan-Atome auf Gallium-Gitterplätzen und der Löcherkonzentration proportional [Mn_Ga] · p^(1/3). Zunächst wurden LT-GaAs:C-Schichten mit den Wachstumsbedingungen der LT-(Ga,Mn)As-Schichten gewachsen, um bei diesen Wachstumsbedingungen die elektrische Aktivierung der Kohlenstoffatome zu bestimmen. Es konnte eine Löcherkonzentration von 5 · 10^19 cm^(-3) verwirklicht werden. Aufgrund der erfolgreichen p-Dotierung von LT-GaAs:C wurden (Ga,Mn)As-Einzelschichten zusätzlich mit Kohlenstoff p-dotiert. Abhängig von den Wachstumsbedingungen konnte eine Erhöhung der Ladungsträgerkonzentration im Vergleich zu den (Ga,Mn)As-Schichten erreicht werden. Trotzdem ergaben magnetische Messungen für alle (Ga,Mn)As:C-Schichten eine Abnahme der Curie-Temperatur. Der Einfluss der Kohlenstoff-Dotierung auf die Gitterkonstante, die elektrische Leitfähigkeit und die Magnetisierung ließ auf einen veränderten Einbau der Mangan-Atome verursacht durch die Kohlenstoff-Dotierung schließen. / In the field of spintronics there are efforts to combine semiconductors and ferromagnetic materials in order to merge the advantages of highly specialised microelectronics with modern magnetic hard disk technology. The III-V semiconductor GaAs is employed in many electronic circuits and the ferromagnetic (Ga,Mn)As could be integrated in current optical and electronic devices. Therefore an intensive investigation of its crystalline quality and its electrical and magnetic properties is of particular interest. Because of the low solubility of manganese atoms in GaAs, (Ga,Mn)As must be fabricated far from thermal equilibrium with low-temperature molecular beam epitaxy in order to achieve a high concentration of magnetic ions and holes. This low-temperature growth of gallium-arsenide compounds creates difficulties because undesirable defects are built into the host lattice. The type and quantity of defects is dependent on growth parameters. The lattice constant is influenced not only by the manganese concentration, but also by the arsenic excess, which causes a high electrical and magnetic compensation of the (Ga,Mn)As material. Depending on the growth parameters, calibration curves for manganese incorporation were determined from x-ray diffraction, i. e. from the lattice constant of (Ga,Mn)As. To get a better understanding about the influence of growth parameters other than manganese concentration on the lattice constant, we grew several series of samples for investigation by x-ray diffraction and secondary ion mass spectroscopy. It was shown that the manganese concentration is determined only by the manganese flux and is independent of other growth parameters. However the lattice constant shows a dependence on the growth parameters, i. e., on the excess arsenic build into the host lattice (Ga,Mn)As. Furthermore the temperature dependence of the lateral conductivity of different (Ga,Mn)As layers was investigated. A dependence on growth parameters in addition to a dependence on the manganese concentration was observed. Beside these conductivity measurements, capacitance measurements were carried out in order to determine the carrier concentration of various (Ga,Mn)As layers. Growth parameters yielding were determined which resulted in a carrier concentration of 2 × 1021 cm-3 for a manganese concentration of 6 %. Such layers were reproducibly fabricated, with a Curie temperature of 70 K, for a layer thickness of 70 nm. With ex situ annealing it was possible to raise the Curie temperature to 140 K. In addition to (Ga,Mn)As single layers, several (GaAs/MnAs) superlattices were grown and characterized by x-ray diffraction. The aim was to grow superlattices with a high average manganese concentration consisting of thin GaAs layers and thick MnAs submonolayers. GaAs layers thinner than 10 ML lead to polycrystalline growth independent of the thickness of the MnAs submonolayer. The thickest MnAs submonolayer which could be realized was 0.38 ML. Superlattices with a nominally high manganese concentration have reduced satellite peak intensities in x-ray diffraction, indicating a diffusion of the manganese atoms. The experimental value of the (Ga,Mn)As Curie temperature seems to be limited due to strong compensation of the material. Theoretical calculations based on the carrier induced ferromagnetism model predict an increase of the Curie temperature with increasing manganese atoms on gallium sites and with hole concentration following ~ [Mn_Ga] × p^(1/3). Initially, LT-GaAs:C layers were grown with the same parameters as LT-(Ga,Mn)As layers in order to determine the electrical activation of the carbon atoms with these growth parameters. A hole concentration of 5 × 10^(19) cm^(-3) was achieved. Because of the promising p-doping of the LT-GaAs:C several (Ga,Mn)As layers were additionally doped with carbon. Depending on growth parameters, an increase in the hole concentration could be achieved compared to the intrinsic (Ga,Mn)As layers. However magnetisation measurements show a decrease in the Curie temperature for all (Ga,Mn)As:C layers. The influence of the carbon doping on the lattice constant, the electrical conductivity, and the magnetism indicates that the manganese atoms are incorporated into the lattice host differently as result of the carbon doping.
4

A Comprehensive Study of Magnetic and Magnetotransport Properties of Complex Ferromagnetic/Antiferromagnetic- IrMn-Based Heterostructures

Arekapudi, Sri Sai Phani Kanth 21 June 2023 (has links)
Manipulation of ferromagnetic (FM) spins (and spin textures) using an antiferromagnet (AFM) as an active element in exchange coupled AFM/FM heterostructures is a promising branch of spintronics. Recent ground-breaking experimental demonstrations, such as electrical manipulation of the interfacial exchange coupling and FM spins, as well as ultrafast control of the interfacial exchange-coupling torque in AFM/FM heterostructures, have paved the way towards ultrafast spintronic devices for data storage and neuromorphic computing device applications.[5,6] To achieve electrical manipulation of FM spins, AFMs offer an efficient alternative to passive heavy metal electrodes (e.g., Pt, Pd, W, and Ta) for converting charge current to pure spin current. However, AFM thin films are often integrated into complex heterostructured thin film architectures resulting in chemical, structural, and magnetic disorder. The structural and magnetic disorder in AFM/FM-based spintronic devices can lead to highly undesirable properties, namely thermal dependence of the AFM anisotropy energy barrier, fluctuations in the magnetoresistance, non-linear operation, interfacial spin memory loss, extrinsic contributions to the effective magnetic damping in the adjacent FM, decrease in the effective spin Hall angle, atypical magnetotransport phenomena and distorted interfacial spin structure. Therefore, controlling the magnetic order down to the nanoscale in exchange coupled AFM/FM-based heterostructures is of fundamental importance. However, the impact of fractional variation in the magnetic order at the nanoscale on the magnetization reversal, magnetization dynamics, interfacial spin transport, and the interfacial domain structure of AFM/FM-based heterostructures remains a critical barrier. To address the aforementioned challenges, we conduct a comprehensive experimental investigation of chemical, structural, magnetization reversal (integral and element-specific), magnetization dynamics, and magnetotransport properties, combined with high-resolution magnetic imaging of the exchange coupled Ni3Fe/IrMn3-based heterostructures. Initially, we study the chemical, structural, electrical, and magnetic properties of epitaxially textured MgO(001)/IrMn3(0-35 nm)/Ni3Fe(15 nm)/Al2O3(2.0 nm) heterostructures. We reveal the impact of magnetic field annealing on the interdiffusion at the IrMn3/Ni3Fe interface, electrical resistivity, and magnetic properties of the heterostructures. We further present an AFM IrMn3 film thickness dependence of the exchange bias field, coercive field, magnetization reversal, and magnetization dynamics of the exchange coupled heterostructures. These experiments reveal a strong correlation between the chemical, structural and magnetic properties of the IrMn3-based heterostructures. We find a significant decrease in the spin-mixing conductance of the chemically-disordered IrMn3/Ni3Fe interface compared to the chemically-ordered counterpart. Independent of the AFM film thickness, we unveil that thermally disordered AFM grains exist in all the samples (measured up to 35-nm-thick IrMn3 films). We develop an iterative magnetic field cooling procedure to systematically manipulate the orientation of the thermally disordered and reversible AFM moments and thus, achieve tunable magnetic, and magnetotransport properties of exchange coupled AFM-based heterostructures. Subsequently, we investigate the impact of fractional variation in the AFM order on the magnetization reversal and magnetotransport properties of the epitaxially textured ɣ-phase IrMn3/Ni3Fe, Ni3Fe/IrMn3/Ni3Fe, and Ni3Fe/IrMn3/Ni3Fe/CoO heterostructures. We probe the element-specific (FM: Ni and Co, and AFM: Mn) magnetization reversal properties of the exchange coupled Ni3Fe/IrMn3/Ni3Fe/Co/CoO heterostructures in various magnetic field cooled states. We present a detailed procedure for separating the spin and orbital moment contributions for magnetic elements using the XMCD sum rule. We address whether Mauri-type domain walls can develop at the (polycrystalline) exchange coupled Ni3Fe/IrMn3/Ni3Fe interfaces. We further study the impact of magnetic field cooling on the AFM Mn (near L2,3-edges) X-ray absorption spectra. Finally, we employ a combination of in-field high-resolution magnetic force microscopy, magnetooptical Kerr effect magnetometry with micro-focused beam, and micromagnetic simulations to study the magnetic vortex structures in exchange coupled FM/AFM and AFM/FM/AFM disk structures. We examine the magnetic vortex annihilation mechanism mediated by the emergence and subsequent annihilation of the vortex-antivortex (V-AV) pairs in simple FM and exchange coupled FM/AFM as well as AFM/FM/AFM disk structures. We image the distorted magnetic vortex structures in exchange coupled FM/AFM disks proposed by Gilbert and coworkers. We further emphasize crucial magnetic vortex properties, such as handedness, effective vortex core radius, core displacement at remanence, nucleation field, annihilation field, and exchange bias field. Our experimental inquiry offers profound insight into the interfacial exchange interaction, magnetization reversal, magnetization dynamics, and interfacial spin transport of the AFM/FM-based heterostructures. Moreover, our results pave the way towards nanoscale control of the magnetic properties in AFM-based heterostructures and point towards future opportunities in the field of AFM spintronic devices.:1. Introduction 2. Magnetic Interactions and Exchange Bias Effect 3. Materials 4. Experimental Methods 5. Structural, Electrical, and Magnetization Reversal Properties of Epitaxially Textured ɣ-IrMn3/ Ni3Fe Heterostructures 6. Magnetization Dynamics of MgO(001)/IrMn3/Ni3Fe Heterostructures in the Frequency Domain 7. Tunable Magnetic and Magnetotransport Properties of MgO(001)/Ni3Fe/IrMn3/Ni3Fe/ CoO/Pt Heterostructures 8. Element-Specific XMCD Study of the Exchange Couple Ni3Fe/IrMn3/Ni3Fe/Co/CoO Heterostructures 9. Distorted Vortex Structure and Magnetic Vortex Reversal Processes in Exchange Coupled Ni3Fe/IrMn3 Disk Structures 10. Conclusions and Outlook Addendum Acronyms Symbols Publication List Author Information Acknowledgments Statement of Authorship

Page generated in 1.8677 seconds