• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies On Bio-Oxidation A Refractory Gold Containing Sulphidic Concentrate With Respect To Optimization And Modeling

Chandraprabha, M N 11 1900 (has links)
Although bacterial leaching of sulphidic minerals is a well-known phenomenon, it is only in the last ten years that full-scale bacterial leaching plants have been commissioned for gold processing. In order for bacterial leaching to compete successfully with other pretreatment processes for refractory ores, particularly with established technologies such as roasting and pressure leaching, it needs to be efficient. This requires the optimization of the parameters affecting the leaching reaction and the growth of bacteria. The entire biotreatment process is agitation leaching, carried out in stirred reactors or Pachuca type reactors. The bacterial oxidation is a complex reaction involving gaseous, liquid and solid phases. The interactions are highly complex, and analysis is complicated by the presence of solids in the leaching medium. Inspite of the amount of research that has been performed, kinetic and process models are underdeveloped. Since kinetic data varies widely with the type and source of concentrate, experimental data should be generated before doing the full-scale reactor design. In sizing reactors for a commercial scale process, it would be useful to have a mathematical model that one could use to predict the amount and rate of release of metal, as a function of the various operating parameters of the system. G.R.Halli arsenical gold sulphide concentrate obtained from Hutti Gold Mines Ltd., Karnataka, was chosen for our study, because of its high refractoriness. An indegenous strain of Thiobacillus ferrooxidans was used for biooxidation. The experiments were conducted in a well-agitated stirred tank reactor under controlled conditions. Sparged air was supplemented with carbon-dioxide for optimized growth. In this work, more than 90% gold and 95% silver could be recovered from the sulphidic gold concentrate when bioleaching was used ahead of cyanidation, compared to 40% and 50% by direct cyanidation. A generalized model, which accounts for both direct bacterial attack and indirect chemical leaching, has been proposed for the biooxidation of refractory gold concentrates. The bacterial balance, therefore, accounts for its growth both on solid substrate and in solution, and for the attachment to and detachment from the surface. The overall process is considered to consist of several sub-processes, each of which can be described in terms of a mechanism and related rate expressions. These sub-processes were studied seperately under kinetically controlled conditions. The key parameters appearing in the rate equations were evaluated using the experimental data. Since the refractory concentrate contains pyrite and arsenopyrite as the major leachable entities, leaching studies have been done on pure pyrite and arsenopyrite as test minerals and the key parameters in the rate equations are evaluated using this data. The model so developed is tested with the leaching kinetics of the concentrate. The growth of bacteria is dependent on the availability of the substrate, ferrous iron, and the dependence is modelled by the widely accepted Monod equation. The effect of carbon dioxide supplementation on the bacterial activity was studied and the optimal concentration for growth was found to be l%(v/v). Studies on indirect chemical leaching showed that the rate is sensitive to surface area of concentrate. Indirect rate constant of arsenopyrite was found to be greater than that of pyrite, since pyrite is more nobler than arsenopyrite. Conditions of direct leaching alone was obtained at high pulp density and using substrate adapted bacteria. The rate constant of arsenopyrite was found to be greater than that of pyrite. The parameters obtained were tested with the overall batch leaching data of the concentrate and favourable comparision was obtained. Thus, it has been possible to isolate the various simultaneous sub-processes occurring during the leaching and propose useful models to describe these processes in some detail. The model has been extended successfully to predict the continuous leaching behaviour using the parameters obtained from the batch data. Studies on the effect of residence time and pulp density on steady state behaviour showed that there is a critical residence time and pulp density below which washout conditions occur. The critical residence time at 10% pulp density was found to be 11 hrs. Operation at pulp densities lower than 5% and residence times lower than 72 hrs is not favourable for efficient leaching. Studies on the effect of initial ferric iron concentration showed that there exists an optimum concentration of ferric iron at which the time required to reach steady state is minimum.
2

Nitrate removal and Fe(III) recovery through Fe(II)-driven denitrification with different microbial cultures / Élimination des nitrates et récupération du Fe(III) par la dénitrification autotrophe utilisant le fer ferreux avec différentes cultures microbiennes

Kiskira, Kyriaki 15 December 2017 (has links)
La dénitrification autotrophe utilisant le fer Ferreux est un bioprocédé innovant pour l'élimination des nitrates, en même temps que l'oxydation du fer dans les eaux usées. Les dénitrifiants chimio-autotrophes convertissent le nitrate en azote gazeux et l'oxydation du Fe(II) conduit à la production de précipités de fer ferrique qui peuvent ensuite être enlevés et récupérés. La possibilité de maintenir une dénitrification autotrophe avec le fer ferreux en utilisant une culture mixte de Thiobacillus, un inoculum de boue activée et des cultures pures de la souche Pseudogulbenkiania 2002 et de T. denitrificans dans différentes conditions de pH et d'EDTA:Fe(II) a été initialement étudiée dans des essais biologiques par lots. Des ratios plus faibles d’EDTA:Fe(II) se traduisent par une efficacité et des taux d'élimination des nitrates plus élevés. La culture mixte de Thiobacillus présente le taux d'élimination de nitrate le plus élevé, égal à 1.18 mM•(g VSS•d)-1.Par la suite, la culture mixte de Thiobacillus a été ensemencée dans deux réacteurs à lit tassé à flux montant identiques. Les deux réacteurs (réacteur 1 et 2) ont reçu respectivement 120 et 60 mg / L de nitrate et une alimentation différente de Fe (II) afin de respecter un rapport molaire Fe(II):NO3- de 5:1. L’EDTA a été supplémenté à un rapport molaire EDTA:Fe(II) de 0,5:1. Le pH, le TRH et la température étaient de 6,5-7,0, 31 h et 22 ± 2 ° C. Dans le réacteur 1, le TRH a été raccourci de 31 à 24 h et la concentration de NO3- a été maintenue stable à 250 mg / L. Inversement, le réacteur 2 a été mis en fonctionnement avec un TRH décroissant et une concentration de NO3- en alimentation, maintenant ainsi un taux de charge de NO3- stable. Après environ 80 jours d'incubation, l'élimination des nitrates était de 88% dans le réacteur 1 pour un THR de 31 h. L'élimination de nitrates la plus élevée obtenue dans le réacteur 2 était de 80%. Une diminution du TRH de 31 à 24 h n'a pas affecté l'élimination du nitrate dans le réacteur 1, alors que dans le réacteur 2 l'élimination du nitrate a diminué à 64%.De plus, l'influence des métaux lourds (Ni, Cu, Zn) sur la dénitrification autotrophe utilisant du fer ferreux a été évaluée dans des essais biologiques discontinus, en utilisant les mêmes quatre cultures microbiennes différentes. L'efficacité et les taux d'élimination des nitrates les plus élevés ont été obtenus avec la culture mixte dominante de Thiobacillus, alors que la souche Pseudogulbenkiania de 2002 était la moins efficace. Cu s'est avéré être le métal le plus inhibiteur pour les cultures mixtes. Un impact plus faible a été observé lorsque le Zn a été ajouté. Le Ni présentait l'effet inhibiteur le plus faible. Une sensibilité plus élevée à la toxicité des métaux a été observée pour les cultures pures. Enfin, la caractérisation minérale des précipités obtenus pour les expériences avec du Cu, Ni et Zn a été étudiée. Chez les témoins abiotiques, l'oxydation chimique du Fe (II) a entraîné la formation d'hématite. Un mélange de différents (hydro)oxides de Fe(III) a été observé pour toutes les cultures microbiennes, et en particulier : i) un mélange d'hématite, d'akaganéite et / ou de ferrihydrite a été observé dans les précipités des expériences réalisées avec la culture mixte dominée par la présence de Thiobacillus; ii) en plus d'hématite, de l'akaganeite et / ou de la ferrihydrite, la maghémite a été identifiée lorsque la culture pure de T. denitrificans a été utilisée; iii) l'utilisation de la culture pure de la souche Pseudogulbenkiania 2002 a entraîné la formation d'hématite et de maghémite; enfin, l'enrichissement en boues activées a permis la production d'hématite et de magnétite en plus de la maghémite. Aucune différence concernant la minéralogie des précipités n'a été observée avec l'addition de Cu, alors que l'addition de Ni et de Zn a probablement stimulé la formation de maghémite. Une caractérisation minérale supplémentaire est cependant nécessaire / Ferrous iron mediated autotrophic denitrification is an innovative bioprocess for nitrate removal, simultaneously with iron oxidation in wastewaters. Chemoautotrophic denitrifiers convert nitrate to nitrogen gas and Fe(II) oxidation results in the production of ferric iron precipitates that can be subsequently removed and recovered. The feasibility of maintaining Fe(II)-mediated autotrophic denitrification with a Thiobacillus mixed culture, an activated sludge inoculum and pure cultures of Pseudogulbenkiania strain 2002 and T. denitrificans under different pH and EDTA:Fe(II) conditions was initially investigated in batch bioassays. Lower EDTA: Fe(II) ratios resulted in higher nitrate removal efficiency and rates. The Thiobacillus mixed culture resulted in the highest specific nitrate removal rate, equal to 1.18 mM•(g VSS•d)-1.Subsequently, the Thiobacillus mixed culture was seeded in two identical up-flow packed bed reactors. The two reactors (reactor 1 and 2) were fed with 120 and 60 mg/L of nitrate, respectively, and a different Fe(II) feed in order to respect a molar ratio Fe(II):NO3- 5:1. EDTA was supplemented at a EDTA:Fe(II) molar ratio 0.5:1. The pH, HRT and temperature were 6.5-7.0, 31 h and 22±2°C. In reactor 1, HRT was shortened from 31 to 24 h and NO3- concentration was maintained stable at 250 mg/L. Conversely, reactor 2 was operated with decreasing HRT and feed NO3- concentration, thus maintaining a stable NO3- loading rate. After approximately 80 d of incubation, nitrate removal was 88% in reactor 1 at HRT of 31 h. The highest nitrate removal achieved in reactor 2 was 80%. A HRT decrease from 31 to 24 h did not affect nitrate removal in reactor 1, whereas nitrate removal decreased to 64% in reactor 2.Moreover, the influence of heavy metals (Ni, Cu, Zn) on Fe(II)-mediated autotrophic denitrification was assessed in batch bioassays. The highest nitrate removal efficiency and rates were achieved with the Thiobacillus-dominated mixed culture, whereas Pseudogulbenkiania strain 2002 was the least effective. Cu showed to be the most inhibitory metal for mixed cultures. A lower impact was observed when Zn was supplemented. Ni showed the lowest inhibitory effect. A higher sensitivity to metal toxicity was observed for the pure cultures. Finally, the mineral characterization of the precipitates obtained in the experiments with Cu, Ni and Zn was investigated. In abiotic controls, the chemical Fe(II) oxidation resulted in hematite formation. A mixture of different Fe(III) (hydr)oxides was observed with all microbial cultures, and in particular: i) a mixture of hematite, akaganeite and/or ferrihydrite was observed in the precipitates of the experiments carried out with the Thiobacillus-dominated mixed culture; ii) on top of hematite, akaganeite and/or ferrihydrite, maghemite was identified when the T.denitrificans pure culture was used; iii) the use of the pure culture of Pseudogulbenkiania strain 2002 resulted in hematite and maghemite formation; finally, the activated sludge enrichment allowed the production of hematite and magnetite besides maghemite. No difference in the mineralogy of the precipitates was observed with the addition of Cu, whereas the addition of Ni and Zn likely stimulated the formation of maghemite. Further mineral characterization is however required

Page generated in 0.1177 seconds