• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • Tagged with
  • 23
  • 23
  • 23
  • 12
  • 10
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Few-shot prompt learning for automating model completion

Ben-Chaaben, Meriem 08 1900 (has links)
Les modélisateurs rencontrent souvent des défis ou des difficultés lorsqu’il s’agit de concevoir un modèle logiciel particulier. Dans cette thèse, nous avons exploré différentes voies et examiné différentes approches pour résoudre cette problématique. Nous proposons enfin une approche simple mais novatrice qui améliore la complétion des activités de modélisation de domaines. Cette approche exploite la puissance des modèles de langage de grande taille en utilisant l’apprentissage par seulement quelques exemples, éliminant ainsi la nécessité d’un apprentissage profond ou d’un ajustement fin (fine tuning) sur des ensembles de données rares dans ce domaine. L’un des points forts de notre approche est sa polyvalence, car elle peut s’intégrer fa cilement à de nombreuses activités de modélisation, fournissant un aide précieux et des recommendations aux modélisateurs. De plus, nous avons mené une étude utilisateur pour évaluer l’utilité de cette méthode et la valeur de l’assistance en modélisation; nous avons cherché à savoir si l’effort investi dans l’assistance en modélisation vaut la peine en recueillant les commentaires des concepteurs de modèles logiciels. / Modelers often encounter challenges or difficulties when it comes to designing a particular software model. Throughout this thesis, we have explored various paths and examined different approaches to address this issue. We finally propose a simple yet novel approach enhancing completion in domain modeling activities. This approach leverages the power of large language models by utilizing few-shot prompt learning, eliminating the need for extensive training or fine-tuning on scarce datasets in this field. One of the notable strengths of our approach lies in its versatility, as it can be seamlessly integrated into various modeling activities, providing valuable support and recommendations to software modelers. Additionally, we conducted a user study to evaluate the usefulness of this approach and determine the value of providing assistance in modeling; we aimed to determine if the effort invested in modeling assistance is worthwhile by gathering feedback from software modelers.
22

Toward trustworthy deep learning : out-of-distribution generalization and few-shot learning

Gagnon-Audet, Jean-Christophe 04 1900 (has links)
L'intelligence artificielle est un domaine en pleine évolution. Au premier plan des percées récentes se retrouve des approches connues sous le nom d'apprentissage automatique. Cependant, bien que l'apprentissage automatique ait montré des performances remarquables dans des tâches telles que la reconnaissance et la génération d'images, la génération et la traduction de textes et le traitement de la parole, il est connu pour échouer silencieusement dans des conditions courantes. Cela est dû au fait que les algorithmes modernes héritent des biais des données utilisées pour les créer, ce qui conduit à des prédictions incorrectes lorsqu'ils rencontrent de nouvelles données différentes des données d'entraînement. Ce problème est connu sous le nom de défaillance hors-distribution. Cela rend l'intelligence artificielle moderne peu fiable et constitue un obstacle important à son déploiement sécuritaire et généralisé. Ignorer l'échec de généralisation hors-distribution de l'apprentissage automatique pourrait entraîner des situations mettant des vies en danger. Cette thèse vise à aborder cette question et propose des solutions pour assurer le déploiement sûr et fiable de modèles d'intelligence artificielle modernes. Nous présentons trois articles qui couvrent différentes directions pour résoudre l'échec de généralisation hors-distribution de l'apprentissage automatique. Le premier article propose une approche directe qui démontre une performance améliorée par rapport à l'état de l'art. Le deuxième article établie les bases de recherches futures en généralisation hors distribution dans les séries temporelles, tandis que le troisième article fournit une solution simple pour corriger les échecs de généralisation des grands modèles pré-entraînés lorsqu'entraîné sur tes tâches en aval. Ces articles apportent des contributions précieuses au domaine et fournissent des pistes prometteuses pour la recherche future en généralisation hors distribution. / Artificial Intelligence (AI) is a rapidly advancing field, with data-driven approaches known as machine learning, at the forefront of many recent breakthroughs. However, while machine learning have shown remarkable performance in tasks such as image recognition and generation, text generation and translation, and speech processing, they are known to silently fail under common conditions. This is because modern AI algorithms inherit biases from the data used to train them, leading to incorrect predictions when encountering new data that is different from the training data. This problem is known as distribution shift or out-of-distribution (OOD) failure. This causes modern AI to be untrustworthy and is a significant barrier to the safe widespread deployment of AI. Failing to address the OOD generalization failure of machine learning could result in situations that put lives in danger or make it impossible to deploy AI in any significant manner. This thesis aims to tackle this issue and proposes solutions to ensure the safe and reliable deployment of modern deep learning models. We present three papers that cover different directions in solving the OOD generalization failure of machine learning. The first paper proposes a direct approach that demonstrates improved performance over the state-of-the-art. The second paper lays the groundwork for future research in OOD generalization in time series, while the third paper provides a straightforward solution for fixing generalization failures of large pretrained models when finetuned on downstream tasks. These papers make valuable contributions to the field and provide promising avenues for future research in OOD generalization.
23

Towards computationally efficient neural networks with adaptive and dynamic computations

Kim, Taesup 08 1900 (has links)
Ces dernières années, l'intelligence artificielle a été considérablement avancée et l'apprentissage en profondeur, où des réseaux de neurones profonds sont utilisés pour tenter d'imiter vaguement le cerveau humain, y a contribué de manière significative. Les réseaux de neurones profonds sont désormais capables d'obtenir un grand succès sur la base d'une grande quantité de données et de ressources de calcul suffisantes. Malgré leur succès, leur capacité à s'adapter rapidement à de nouveaux concepts, tâches et environnements est assez limitée voire inexistante. Dans cette thèse, nous nous intéressons à la façon dont les réseaux de neurones profonds peuvent s'adapter à des circonstances en constante évolution ou totalement nouvelles, de la même manière que l'intelligence humaine, et introduisons en outre des modules architecturaux adaptatifs et dynamiques ou des cadres de méta-apprentissage pour que cela se produise de manière efficace sur le plan informatique. Cette thèse consiste en une série d'études proposant des méthodes pour utiliser des calculs adaptatifs et dynamiques pour aborder les problèmes d'adaptation qui sont étudiés sous différentes perspectives telles que les adaptations au niveau de la tâche, au niveau temporel et au niveau du contexte. Dans le premier article, nous nous concentrons sur l'adaptation rapide des tâches basée sur un cadre de méta-apprentissage. Plus précisément, nous étudions l'incertitude du modèle induite par l'adaptation rapide à une nouvelle tâche avec quelques exemples. Ce problème est atténué en combinant un méta-apprentissage efficace basé sur des gradients avec une inférence variationnelle non paramétrique dans un cadre probabiliste fondé sur des principes. C'est une étape importante vers un méta-apprentissage robuste que nous développons une méthode d'apprentissage bayésienne à quelques exemples pour éviter le surapprentissage au niveau des tâches. Dans le deuxième article, nous essayons d'améliorer les performances de la prédiction de la séquence (c'est-à-dire du futur) en introduisant une prédiction du futur sauteur basée sur la taille du pas adaptatif. C'est une capacité critique pour un agent intelligent d'explorer un environnement qui permet un apprentissage efficace avec une imagination sauteur futur. Nous rendons cela possible en introduisant le modèle hiérarchique d'espace d'état récurrent (HRSSM) qui peut découvrir la structure temporelle latente (par exemple, les sous-séquences) tout en modélisant ses transitions d'état stochastiques de manière hiérarchique. Enfin, dans le dernier article, nous étudions un cadre qui peut capturer le contexte global dans les données d'image de manière adaptative et traiter davantage les données en fonction de ces informations. Nous implémentons ce cadre en extrayant des concepts visuels de haut niveau à travers des modules d'attention et en utilisant un raisonnement basé sur des graphes pour en saisir le contexte global. De plus, des transformations au niveau des caractéristiques sont utilisées pour propager le contexte global à tous les descripteurs locaux de manière adaptative. / Over the past few years, artificial intelligence has been greatly advanced, and deep learning, where deep neural networks are used to attempt to loosely emulate the human brain, has significantly contributed to it. Deep neural networks are now able to achieve great success based on a large amount of data and sufficient computational resources. Despite their success, their ability to quickly adapt to new concepts, tasks, and environments is quite limited or even non-existent. In this thesis, we are interested in how deep neural networks can become adaptive to continually changing or totally new circumstances, similarly to human intelligence, and further introduce adaptive and dynamic architectural modules or meta-learning frameworks to make it happen in computationally efficient ways. This thesis consists of a series of studies proposing methods to utilize adaptive and dynamic computations to tackle adaptation problems that are investigated from different perspectives such as task-level, temporal-level, and context-level adaptations. In the first article, we focus on task-level fast adaptation based on a meta-learning framework. More specifically, we investigate the inherent model uncertainty that is induced from quickly adapting to a new task with a few examples. This problem is alleviated by combining the efficient gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework. It is an important step towards robust meta-learning that we develop a Bayesian few-shot learning method to prevent task-level overfitting. In the second article, we attempt to improve the performance of sequence (i.e. future) prediction by introducing a jumpy future prediction that is based on the adaptive step size. It is a critical ability for an intelligent agent to explore an environment that enables efficient option-learning and jumpy future imagination. We make this possible by introducing the Hierarchical Recurrent State Space Model (HRSSM) that can discover the latent temporal structure (e.g. subsequences) while also modeling its stochastic state transitions hierarchically. Finally, in the last article, we investigate a framework that can capture the global context in image data in an adaptive way and further process the data based on that information. We implement this framework by extracting high-level visual concepts through attention modules and using graph-based reasoning to capture the global context from them. In addition, feature-wise transformations are used to propagate the global context to all local descriptors in an adaptive way.

Page generated in 0.0755 seconds