• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 50
  • 22
  • 14
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 436
  • 436
  • 170
  • 65
  • 45
  • 42
  • 42
  • 38
  • 37
  • 37
  • 31
  • 31
  • 31
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Frequency-shifted Interferometry for Fiber-optic Sensing

Ye, Fei 14 January 2014 (has links)
This thesis studies frequency-shifted interferometry (FSI), a useful and versatile technique for fiber-optic sensing. I first present FSI theory by describing practical FSI configurations and discussing the parameters that affect system performance. Then, I demonstrate the capabilities of FSI in fiber-optic sensor multiplexing and high sensitivity chemical analysis. We implemented a cryogenic liquid level sensing system in which an array of 3 fiber Bragg grating (FBG) based sensors was interrogated by FSI. Despite sensors' spectral overlap, FSI is able to separate sensor signals according to their spatial locations and to measure their spectra, from which whether a sensor is in liquid or air can be unambiguously determined. I showed that a broadband source paired with a fast tunable filter can be used in FSI systems as the light source. An array of 9 spectrally overlapping FBGs was successfully measured by such a system, indicating the potential of system cost reduction as well as measurement speed improvement. I invented the the FSI-CRD technique, a highly sensitive FSI-based fiber cavity ring-down (CRD) method capable of deducing minuscule loss change in a fiber cavity from the intensity decay rate of continuous-wave light circulating in the cavity. As a proof-of-principle experiment, I successfully measured the fiber bend loss introduced in the fiber cavity with FSI-CRD, which was found to be 0.172 dB/m at a bend radius of 12.5 mm. We then applied FSI-CRD to evanescent-field sensing. We incorporated fiber tapers as the sensor head in the system and measured the concentration of 1-octyne solutions. A minimum detectable 1-octyne concentration of 0.29% was achieved with measurement sensitivity of 0.0094 dB/% 1-octyne. The same system also accurately detected the concentration change of sodium chloride (NaCl) and glucose solutions. Refractive index sensitivity of 1 dB/RIU with a measurement error of 1*10^-4 dB was attined for NaCl solutions. Finally, I proposed a theoretical model to study the polarization effects in FSI systems. Preliminary results show that the model can already explain the experimental observations. It not only provides insight into how to improve system performance but also suggests potential new applications of the technique.
302

Frequency-shifted Interferometry for Fiber-optic Sensing

Ye, Fei 14 January 2014 (has links)
This thesis studies frequency-shifted interferometry (FSI), a useful and versatile technique for fiber-optic sensing. I first present FSI theory by describing practical FSI configurations and discussing the parameters that affect system performance. Then, I demonstrate the capabilities of FSI in fiber-optic sensor multiplexing and high sensitivity chemical analysis. We implemented a cryogenic liquid level sensing system in which an array of 3 fiber Bragg grating (FBG) based sensors was interrogated by FSI. Despite sensors' spectral overlap, FSI is able to separate sensor signals according to their spatial locations and to measure their spectra, from which whether a sensor is in liquid or air can be unambiguously determined. I showed that a broadband source paired with a fast tunable filter can be used in FSI systems as the light source. An array of 9 spectrally overlapping FBGs was successfully measured by such a system, indicating the potential of system cost reduction as well as measurement speed improvement. I invented the the FSI-CRD technique, a highly sensitive FSI-based fiber cavity ring-down (CRD) method capable of deducing minuscule loss change in a fiber cavity from the intensity decay rate of continuous-wave light circulating in the cavity. As a proof-of-principle experiment, I successfully measured the fiber bend loss introduced in the fiber cavity with FSI-CRD, which was found to be 0.172 dB/m at a bend radius of 12.5 mm. We then applied FSI-CRD to evanescent-field sensing. We incorporated fiber tapers as the sensor head in the system and measured the concentration of 1-octyne solutions. A minimum detectable 1-octyne concentration of 0.29% was achieved with measurement sensitivity of 0.0094 dB/% 1-octyne. The same system also accurately detected the concentration change of sodium chloride (NaCl) and glucose solutions. Refractive index sensitivity of 1 dB/RIU with a measurement error of 1*10^-4 dB was attined for NaCl solutions. Finally, I proposed a theoretical model to study the polarization effects in FSI systems. Preliminary results show that the model can already explain the experimental observations. It not only provides insight into how to improve system performance but also suggests potential new applications of the technique.
303

The design and analysis of nodes in a fiber optic based star network (STARNET) /

Tanir, Oryal. January 1985 (has links)
STARNET is a fiber optic based network which facilitates the interconnection of distributed Local Area Networks. Configured as a sixteen pointed star topology with a multiprocessor based controller at the center of the star (named the Central Switch). STARNET is capable of scheduling calls from users connected to User Access Nodes located at the points of the star. Messages are passed from one node to another through the Central Switch via duplex fiber optic lines connecting each node to the center. / This paper presents a multiprocessor based design of the User Access Node. The hardware and software structure is examined in depth, providing solid guidelines for the physical construction of the unit. The performances of statistical STARNET models using parameters obtained from the design (and three different Central Switch models) are plotted and compared for five different examples of external traffic. The model analysis gives an indication of the expected message delays, supporting the feasibility of the design.
304

Simulation methods for the temporal and frequency dynamics of optical communication systems

Reimer, Michael Andrew January 2012 (has links)
I examine two methods for modeling the temporal dynamics of optical communication networks that rapidly and accurately simulate the statistics of unlikely but physically significant system configurations. First, I implement a fiber emulator based upon a random uniform walk over the Poincaré sphere that reproduces the expected polarization temporal autocorrelation statistics with a small number of emulator sections. While easy to implement numerically, the increased computational efficiency afforded by this approach allow simulations of the PMD temporal dynamics to be preferentially biased towards regions of low probability using standard multicanonical methods for the first time. Then, in a subsequent study, I present a general transition matrix formalism that additionally applies to other time-dependent communication systems. I compare the numerical accuracy of several transition matrix sampling techniques and show that straightforward modifications of the acceptance rule can significantly increase computational efficiency if the numerical parameters are chosen to ensure a small self-transition probability within each discretized histogram bin. The general applicability of the transition matrix method is then demonstrated by calculating the outage dynamics associated with the hinge model of polarization evolution and, separately, fading in wireless communication channels. Further, I develop a Magnus expansion formalism for the rapid and accurate estimation of the frequency dynamics of optical polarization that extends the work of Ref.[94] to systems with PMD and PDL. My approach reproduces the power-series expansion and differential equation solution techniques of previous authors while also preserving the required symmetries of the exact solution in every expansion order. This significantly improves the bandwidth of high estimation accuracy, making this method well-suited to the stochastic analysis of PMD and PDL induced system penalty while also yielding physically realizable operator expansions applicable to the joint compensation of PMD and PDL. Finally, I employ high-speed polarimetery to demonstrate experimentally that low-amplitude mechanical excitations of commercially available dispersion compensation modules can excite high-frequency, > 75,000 rotations/s, polarization transients that are nearly invariant between successive measurements. I extend this procedure to measurements of the transient evolution of PMD.
305

Improving the performance of FBG sensing system

Xu, Xingyuan. January 2006 (has links)
Thesis (M.Eng.)--University of Wollongong, 2006. / Typescript. Includes bibliographical references: leaf 101-106.
306

CMOS analog cubing circuits for radio-over-fiber predistortion /

Shearer, Fiona J. January 1900 (has links)
Thesis (M.App.Sc.) - Carleton University, 2006. / Includes bibliographical references (p. 192-196). Also available in electronic format on the Internet.
307

Multiplexing of interferometric fiber optic sensors for smart structure applications using spread spectrum techniques /

Bhatnagar, Mohit, January 1994 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1994. / Vita. Abstract. Includes bibliographical references (leaves 67-68). Also available via the Internet.
308

Fabrication and characterization of calcium aluminate glass fibers

Foy, Paul R. January 2008 (has links)
Thesis (Ph. D.)--Rutgers University, 2008. / "Graduate Program in Ceramic and Materials Science and Engineering." Includes bibliographical references (p. 155-163).
309

Characterization of molecular excited states for nonlinear optics

Kruhlak, Robert J., January 1900 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, 2000. / Includes bibliographical references.
310

Static and Fatigue Fracture Characterization of Primary and Secondary Bonded Woven E-Glass Composites

Thibodeau, Elisabeth Gabrielle January 2007 (has links) (PDF)
No description available.

Page generated in 0.2796 seconds