• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 50
  • 22
  • 14
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 5
  • 4
  • 4
  • 3
  • Tagged with
  • 440
  • 440
  • 172
  • 67
  • 47
  • 43
  • 42
  • 40
  • 37
  • 37
  • 33
  • 31
  • 31
  • 28
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Developing multilayer microfluidic platforms and advancing laser induced fluorescent detection and electrochemical detection to analyze intracellular protein kinases, reactive nitrogen and oxygen species in single cells

Patabadige, Damith Randika E.W. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Christopher T. Culbertson / Recent approaches in analytical separations are being advanced towards the “lab-on-a-chip” concept in which multiple lab functions are integrated into micro/nano fluidic platforms. Among the variety of separation techniques that can be implemented on microfluidic devices, capillary electrophoresis is the most popular as it provides high efficiency, simple, fast and low cost separations. In addition, integrating miniaturized fluid manipulation tools into microfluidic devices with separations is essential for a variety of biological applications. Chapter 1 discusses the fundamentals of capillary electrophoresis and miniaturized fluid manipulation tools and provides an over view of single cell analysis in microfluidics. In chapter 2, the integration of miniaturized peristaltic pumps into multilayer microfluidic platforms is discussed. In addition, device characterization, precise fluid control and high throughput single cell analysis are discussed. As a proof of principle, T-lymphocytes were loaded with two fluorescent probes Carboxyfluorescein diacetate (CFDA) and Oregon green (OG). Thousands of single cells were automatically transported, lysed on these devices and analytes from the lysate were electrophoretically separated. 1120 cells were analyzed over the course of 80 min (14 cells/min) and separation characteristics of analytes released from individual cells were investigated. In the third chapter, the development of microfluidic platforms for the electrochemical detection of nitric oxide (NO) and other reactive nitrogen species (RNS) at the single cell level is discussed. A microfluidic system was developed to perform rapid cell lysis followed by electrochemical detection. Miniaturized microband electrodes were designed and integrated with a microfluidic separation channel. Three alignment techniques (in-channel, end-channel and off-channel configurations) were used to detect the electrochemical response of the analyte of interest. Furthermore, a model analyte (CFDA) was used to demonstrate the potential of performing the simultaneous dual detection with electrochemical and laser induced fluorescence detection. In addition, the same microfluidic platform was adapted to detect intracellular superoxide using laser induced fluorescence. In the fourth chapter, the off-chip integration of optical fiber bridges with multilayer microfluidic chips is discussed. A multimode optical fiber (~10cm long) was integrated between the single cell lysing spot and a spot downstream of the separation channel in order to detect both intact cells and the analyte in the lysate. This technique was used to create two detection spots on the microfluidic platform with the use of a single excitation source and single detector. Fluorescently labeled T-lymphocytes were automatically transported and lysed in a manner similar to that described in chapter 2. Hundreds of single cells were analyzed and the absolute migration time was determined for the analytes in the lysate. In addition, the separation characteristics of fluorescently labeled protein kinase B peptide substrates were investigated. Furthermore, this technique was used to measure cell size and the velocity of intact cells (discussed in 5th chapter) by making use of a light tunneling concept available in multimode optical fibers. All the experiments presented in this dissertation exploit the use of multilayer microfluidic platforms to investigate intracellular components in single cells in a high throughput manner that has several advantages over current conventional techniques.
282

A comparison of design techniques for gradient-index thin film optical filters

08 August 2012 (has links)
M.Ing. / This work comprises the implementation and comparison of five design techniques for the design of gradient-index thin film optical filters: classical rugate, inverse Fourier transform, a wavelet-based design procedure, as well as the flip-flop and the genetic optimization techniques. Designs for a high-reflectance filter, a beamsplitter, a discrete level filter, a distributed filter, and an anti-reflection coating were used to compare the various filter synthesis techniques. The optical thickness of the various examples was maintained below 30 and the refractive index excursion limits were between 1.5 and 3.2. The overall performance of a specific design was evaluated by a weighted merit function. The classical rugate filter uses a sinusoidal refractive index modulation that produces a single reflection band. More complex filters are realized by linear superposition of these elementary profiles. Sidelobe and ripple suppression are obtained by applying quintic windowing functions to the refractive index profile and adding matching layers at the edges of the filter. This filter design procedure has the best figure of merit of 3.73 for the discrete level filter, and the second best of 3.09 for the high-reflectance filter. The inverse Fourier transform links the refractive index profile and reflection spectrum of an optical filter by an approximate relation. It is self-correcting and iterative in nature. It produces filters with the highest optical density. The procedure excels in the design of the distributed filter with a figure of merit of 4.17. Mortlett's wavelet is used as the basis of the wavelet design technique. A single wavelet yields a single reflection band, similar to the classical rugate filter. Sidelobe suppression is an inherent property of the method, but matching layers are needed for passband ripple suppression. The optical density of the high reflection filter is larger for a filter designed with this method than for the equivalent classical rugate filter. The figure of merit of 1.75 for the high-reflectance filter is the best for any of the designs. Flip-flop refinement is a brute force approach to filter design. The layers of a starting design are flipped between two values of refractive index, the change in figure of merit evaluated and the best case saved. This process is repeated for a fixed number of iterations. It is computationally intensive and lacks ripple suppression characteristics. The flip-flop method does not compare well with any of the other techniques. It yields filters with the worst figures of merit for most of the design examples. However, it was applied successfully to the anti-reflection coating. The peak ripple for the anti-reflection filter in the 400 nm to 1100 nm wavelength band is 9.62 % compared to the inverse Fourier transform's 57.30 %. The genetic algorithm operates on the principle of "survival of the fittest". It is a stochastic procedure and yields quasi-random refractive index profiles. It excels with the antireflection coating. The peak ripple in the passband of the anti-reflection coating is 3.29%. The figure of merit for the anti-reflection coating designed with the genetic algorithm is 2.09.
283

Podnikatelský plán / Business plan for internet service provider on fiber optics

Beránková, Iva January 2010 (has links)
The thesis is aimed to prepare a business plan for internet service provider on fiber optics for real company. The business plan includes a market analysis, financial reporting, evaluation of investment efficiency, risk and sensitivity analysis and other essential information which can help company's owner to evaluate the feasibility of the plan.
284

Propagation of Photons through Optical Fiber: Spin-Orbit Interaction and Nonlinear Phase Modulation

Vitullo, Dashiell 21 November 2016 (has links)
We investigate two medium-facilitated interactions between properties of light upon propagation through optical fiber. The first is interaction between the spin and intrinsic orbital angular momentum in a linear optical medium. This interaction gives rise to fine structure in the longitudinal momenta of fiber modes and manifests in rotational beating effects. We probe those beating effects experimentally in cutback experiments, where small segments are cut from the output of a fiber to probe the evolution of both output polarization and spatial orientation, and find agreement between theoretical predictions and measured behavior. The second is nonlinear optical interaction due to cross- and self-phase modulation between the complex-valued temporal amplitude profile of pump pulses and the amplitude profiles of generated signal and idler pulses in optical fiber photon-pair sources utilizing the four-wave mixing process named modulation instability. We develop a model including the effects of these nonlinear phase modulations (NPM) describing the time-domain wave function of the output biphoton in the low-gain regime. Assuming Gaussian temporal amplitude profiles for the pump pulse, we numerically simulate the structure of the biphoton wave function, in symmetric and asymmetric group velocity matching configurations. Comparing the overlap of the joint temporal amplitudes with and without NPM indicates how good of an approximation neglecting NPM is, and we investigate the effects of NPM on the Schmidt modes. We find that effects of NPM are small on temporally separable sources utilizing symmetric group velocity matching, but appreciably change the state of temporally entangled sources with the same group velocity matching scheme. For sources designed to produce entangled biphotons, our simulations suggest that NPM increases the Schmidt number, which may increase entanglement resource availability with utilization of a phase-sensitive detection scheme. We find that NPM effects on temporally separable sources designed with asymmetric group velocity matching produce non-negligible changes in the state structure. The purity is unaffected at perfect asymmetric group velocity matching, but if the pump is detuned from the correct wavelength, the purity degrades. The largest changes to the state due to NPM occur in long fibers with long pulse durations and low repetition rates.
285

A study of fiber optic CDMA systems and optical signal processing. / CUHK electronic theses & dissertations collection

January 2001 (has links)
Wang, Xu. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
286

Coherent optical code division multiple access based on superstructure fiber bragg grating encoders and decoders.

January 2003 (has links)
Li Xin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 81-86). / Abstracts in English and Chinese. / COHERENT OPTICAL CODE DIVISION MULTIPLE ACCESS BASED ON SUPERSTRUCTURE FIBER BRAGG GRATING ENCODERS AND DECODERS --- p.1 / ACKNOWLEDGEMENT --- p.2 / ABSTRACT --- p.III / 摘要 --- p.V / CONTENTS --- p.VI / LIST OF FIGURES --- p.1 / Chapter CHAPTER 1 --- INTRODUCTION --- p.3 / Chapter 1.1 --- Overview of OCDMA --- p.3 / Chapter 1.2 --- Classification of OCDMA Schemes --- p.6 / Chapter 1.3 --- Introduction of Coherent OCDMA Schemes --- p.9 / Chapter 1.4 --- Introduction of superstructure Fiber Bragg Gratings and Other Encoding and Decoding Components --- p.10 / Chapter 1.5 --- Outline of the Thesis --- p.13 / Chapter CHAPTER 2 --- COUPLED MODE THEORY AND SUPERSTRUCTURE FIBER BRAGG GRATING SIMULATION MODEL --- p.16 / Chapter 2.1 --- Fiber Bragg Grating Model Based on Coupled Mode Theory --- p.16 / Chapter 2.1.1 --- Introduction of FBG and the Coupled Mode Theory --- p.16 / Chapter 2.1.2 --- FBG Model Based on CMT --- p.18 / Chapter 2.1.3 --- FBG Model When there are Phase Discontinuities Between Different Parts --- p.20 / Chapter 2.2 --- Properties of Fiber Bragg Gratings --- p.22 / Chapter 2.3 --- Simulation Model of superstructure Fiber Bragg Gratings --- p.27 / Chapter 2.4 --- Summary --- p.31 / Chapter CHAPTER 3 --- COHERENT OCDMA CODING SCHEME BASED ON THE SUPERSTRUCTURE FIBER BRAGG GRATING ENCODER/DECODER --- p.33 / Chapter 3.1 --- Introduction and Theoretical Derivation of the Coding Scheme --- p.33 / Chapter 3.1.1 --- Introduction of the Coding Scheme --- p.33 / Chapter 3.1.2 --- Derivation of SSFBG Encoder --- p.34 / Chapter 3.1.3 --- Encoding for the SSFBG --- p.39 / Chapter 3.2 --- Introduction of the Simulation Model and the Research on It …… --- p.44 / Chapter 3.3 --- Summary --- p.47 / Chapter CHAPTER 4 --- RESEARCH ON THE SIMULATED COHERENT OCDMA SYSTEM IN IDEAL CASE --- p.48 / Chapter 4.1 --- Introduction of the ideal case and factors that affect the system performance --- p.48 / Chapter 4.2 --- Effects by Refractive Index Modulation of the SSFBG Encoder --- p.49 / Chapter 4.3 --- Effects by Code Type --- p.54 / Chapter 4.4 --- Effect by the Code Length --- p.57 / Chapter 4.5 --- Summary --- p.60 / Chapter CHAPTER 5 --- RESEARCH ON THE SIMULATED COHERENT OCDMA SYSTEM IN PRACTICAL ENVIRONMENT --- p.62 / Chapter 5.1 --- Introduction --- p.62 / Chapter 5.2 --- Comparison of System Performance in Synchronous and Asynchronous Cases --- p.63 / Chapter 5.3 --- Discussion on the System Performance When Users are In Different Power Levels --- p.65 / Chapter 5.4 --- Analysis of Channel Noise In the Coherent OCDMA System --- p.68 / Chapter 5.5 --- Summary --- p.70 / Chapter CHAPTER 6 --- CONCLUSIONS AND FUTURE WORK --- p.72 / Chapter 6.1 --- Conclusions --- p.72 / Chapter 6.2 --- Future Work --- p.75 / APPENDIX A PROOF OF SSFBG THEORETICAL MODEL APPROXIMATION --- p.77 / "APPENDIX B RANDOM SEQUENCE, M-SEQUENCE AND WALSH SEQUENCE" --- p.80 / REFERENCES --- p.81
287

Quantum cryptography and applications in the optical fiber network. / CUHK electronic theses & dissertations collection / Digital dissertation consortium

January 2005 (has links)
In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. / Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an essential requirement to perform quantum key distribution. This new generator is composed of a single optical fiber coupler with fiber pigtails, which can be easily used in optical fiber communications. / Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. / Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. / Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. / Luo, Yuhui. / "January 2005." / Adviser: K. T. Chan. / Source: Dissertation Abstracts International, Volume: 67-01, Section: B, page: 0338. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references. / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. Ann Arbor, MI : ProQuest Information and Learning Company, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
288

Optically-controlled generation of wavelength-tunable pulses from semiconductor and fiber lasers using a nonlinear optical loop mirror.

January 2001 (has links)
Tang Wing-Wa. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references. / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.iv / Table of contents --- p.v / List of figure --- p.viii / Chapter 1. --- Introduction --- p.1 / Chapter 1.1. --- Introduction to ultrashort optical pulse generation --- p.2 / Chapter 1.2. --- Introduction to wavelength-tunable pulse generation --- p.5 / Chapter 1.3. --- Introduction to chapters --- p.7 / Chapter 2. --- Principles and Theories --- p.11 / Chapter 2.1. --- Principle of dispersion tuning --- p.12 / Chapter 2.2. --- SOA nonlinear optical loop mirror --- p.16 / Chapter 2.3. --- Principle of dispersion tuning in harmonically mode-locked fiber laser using nonlinear optical loop mirror --- p.19 / Chapter 2.4. --- Principle of re-configurable multi-wavelength pulses generationin a self-seeded laser diode incorporating SOA loop mirror --- p.22 / Chapter 3. --- Rational harmonic mode-locking of an optically triggered fiber laser incorporating a non-linear optical loop modulator --- p.25 / Chapter 3.1. --- Introduction --- p.26 / Chapter 3.2. --- Experiment --- p.27 / Chapter 3.3. --- Result and discussion --- p.30 / Chapter 3.4. --- Summary --- p.37 / Chapter 4. --- Generation of amplitude-equalized optical pulses from a rational harmonic mode-locked fiber laser incorporating a SOA loop modulator --- p.40 / Chapter 4.1. --- Introduction --- p.41 / Chapter 4.2. --- Experiment --- p.42 / Chapter 4.3. --- Result and discussion --- p.44 / Chapter 4.4. --- Summary --- p.47 / Chapter 5. --- Optically controlled dispersion-tuning in harmonically mode-locked erbium doped fiber laser using SOA nonlinear loop modulator --- p.49 / Chapter 5.1. --- Introduction --- p.50 / Chapter 5.2. --- Experiment --- p.51 / Chapter 5.3. --- Result and discussion --- p.54 / Chapter 5.4. --- Summary --- p.58 / Chapter 6. --- Alternate method of constructing harmonically mode-locked fiber laser incorporating SOA nonlinear loop modulator --- p.60 / Chapter 6.1. --- Introduction --- p.61 / Chapter 6.2. --- Experiment --- p.62 / Chapter 6.3. --- Result and discussion --- p.65 / Chapter 6.4. --- Summary --- p.69 / Chapter 7. --- Optically re-configurable multi-wavelength pulse source constructed from a self-seeded laser diode --- p.71 / Chapter 7.1. --- Introduction --- p.72 / Chapter 7.2. --- Experiment --- p.74 / Chapter 7.3. --- Result and discussion --- p.77 / Chapter 7.4. --- Summary --- p.82 / Chapter 8. --- Tunable alternating multi-wavelength pulse source constructed using non-linear optical control of wavelength switching in a self-seeded laser diode --- p.85 / Chapter 8.1. --- Introduction --- p.86 / Chapter 8.2. --- Experiment --- p.87 / Chapter 8.3. --- Result and discussion --- p.89 / Chapter 8.4. --- Summary --- p.92 / Chapter 9. --- Conclusion and future works --- p.94 / Chapter 9.1. --- Conclusion --- p.94 / Chapter 9.2. --- Possible future works --- p.98 / Appendix / List of publications --- p.A-1
289

A time division multiplexer/demultiplexer for an experimental multiple access lightwave system

Nagode, Louis Andrew January 1981 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING / by Louis Andrew Nagode. / M.S.
290

Endless state-of-polarization control for coherent optical communication systems using nematic liquid crystals

Rumbaugh, Scott Hamilton 01 January 1989 (has links)
One of the obstacles to coherent fiber-optic communications is the unpredictable polarization drift which necessitates the use of an active polarization controlling system to match the polarizations of the signal and local oscillator. The polarization match must be maintained during the reset of any of the finite range components to prevent loss of data. We present a novel and practical system which uses three liquid crystal devices for the polarization matching process. Also, the required reset control algorithm and its derivation are described in detail.

Page generated in 0.3812 seconds