• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Fibres microstructurées pour la mise en forme spatiale : fibres délivrant un mode fondamental aplati / Microstructured fibers for spatial beam shaping : fibers delivering a flat fundamental mode

Gouriou, Pierre 15 September 2017 (has links)
La mise en forme spatiale de faisceau laser, en particulier l’obtention d’un profil d’intensité homogène intéresse aussi bien la recherche que l’industrie (recherche biomédicale, microscopie, découpe, gravure, marquage laser, Laser MegaJoule…). De par ses avantages intrinsèques, nous sommes désireux d’apporter une solution fibrée, monomode et à maintien de polarisation. Ces travaux s’articulent autour de 2 problématiques :L’obtention d’un mode plat polarisé linéairement.Différentes solutions ont été mises en place pour satisfaire cette contrainte (embouts, fibres air-silice et fibres toute solide incluant des barreaux de contraintes). Nous avons notamment réalisé une fibre microstructurée air-silice monomode délivrant un mode plat de diamètre 20µm à 1050nm de polarisation linéaire (taux d’extinction de 20dB, biréfringence ~0,6x10-4). Cette fibre a été intégrée avec succès dans une chaine amplificatrice délivrant un faisceau cohérent avec un profil d’intensité aplati polarisé linéairement dépassant 100µJ en régime nanoseconde. En parallèle le développement de codes numériques a permis de proposer des designs augmentant la biréfringence voire polarisants.L’augmentation de l’aire effective du mode.Nos études ont permis de mettre en évidence les compromis entre qualité modale et pertes par courbures y compris dans le cas de structure présentant des résonateurs pour « vider » les modes d’ordre supérieur. L’impact sur le contenu modal des indices de différents types de barreaux de contraintes et de la biréfringence induite a également été étudié. Enfin nous avons réalisé une fibre mode plat à 1050nm de diamètre 34µm (aire effective ~1200µm2) utilisable en tant qu’embout. / Spatial beam shaping, in particular an homogeneous intensity profile is very attractive to fundamental research and industry (biomedical, microscopy, laser cutting, engraving, marking, Laser MegaJoule…). Thanks to its intrinsic advantages we wish to offer a fibered, single-mode and polarization maintaining solution. This work addresses two difficulties:Producing singlemode fiber delivering a flat mode while preserving the light polarization.Several solutions were developed to achieve this objective: fiber end-cap, air-silica and all-solid microstructured fibers with Stress Applying Parts (SAP). We have obtained several fibers including an air-silica microstructured single-mode fiber which delivers a flat fundamental mode with a diameter of 20µm at 1050nm linearly polarized (polarization extinction ratio of 20dB and a birefringence of 0.6x10 4). This fiber was successfully integrated in an amplifier chain delivering a coherent output beam with a flat intensity profile linearly polarized with a power of more than 100µJ for 10 ns pulses. In the same time, we developed a numerical code enabling us to propose designs with enhanced birefringence and even a polarizing behavior.Increase of mode effective areaOur studies exhibit the compromises required between modal quality and bending losses even in the case of a fiber design with resonator to extract from the core its high order modes. The impact of indices of different kinds of SAP and the impact of the induced birefringence on the modal content are also studied. Finally we realized a fiber delivering a flat intensity with a mode diameter equals to 34µm (effective area ~1200µm²) at 1050nm which can be used like an end-cap.
2

Modélisation et caractérisation de fibres de Bragg pixélisées pour application aux lasers intenses / Modeling and characterization of pixelated bragg fibers for intense lasers application

Yehouessi, Jean-Paul 09 November 2016 (has links)
Ces travaux portent sur la réalisation de fibres optiques à très grandes aires effectives pour applications aux lasers intenses. Les applications possibles de ces fibres sont le transport ou la génération de puissants faisceaux lasers. En se basant sur la famille de fibre optique appelée : "fibre de Bragg pixélisée", nous avons introduit le concept de double conditions demi-onde appliquée au mode d’ordre supérieur afin d’augmenter les pertes des modes LP11, LP21, LP02. Le principe d’hétérostructuration quant à lui a permis d’accentuer les pertes des modes d’ordre supérieur grâce à un effet de fuite. Ainsi donc, nous avons réalisé une fibre ayant un diamètre de cœur de 48 µm qui a permis l’obtention d’un diamètre de mode de 40 µm à la longueur d’onde 1050 nm. Dans un second temps, une géométrie de gaine plus simplifiée est proposée. Cette nouvelle géométrie de gaine nous a permis d’accéder à des diamètres de modes allant de 47 µm à 69 µm dans le cas de fibre à bande interdite photonique toutes solides. Ce dernier résultat constitue un diamètre de mode record dans le cas des fibres de Bragg toutes solides. / This work concern the design and the realization of large mode area fiber applied to high power laser. The goal of these fibers are the carrying and the generation of powerful beam laser. Based on special laser family called : "Pixaleted Bragg Fiber" we introduced the innovative concept of double half wave stack conditions applied to the higher order mode to increase the losses of LP11, LP21, LP02 modes. The principle of heterostructuration has been applied in order to increase losses of high order modes using the sieve effect. We succeeded in realizing a fiber with a core diameter of 48 µm, allowing mode field diameter of 40 µm at the wavelength 1050 nm. In the second time, cladding’s geometry has been simplified. This new generation of fiber gives us access to mode field diameter from 47 µm to 69 µm in the case of all solid bandgap fiber. This last result is up to now the highest mode field diameter produced for all solid bandgap fibers.

Page generated in 0.6451 seconds