Spelling suggestions: "subject:"fibre dde bragg"" "subject:"fibre dde cragg""
1 |
Modélisation et réalisation de fibres à bandes interdites photoniques pour la génération et le transport des faisceaux laser puissants / Design and realization of photonic bandgap fibers for high power beam generation and deliveryBaz, Assaad 11 December 2013 (has links)
Ces travaux concernent la modélisation et la réalisation de fibres optiques micro-structurées, et plus particulièrement de fibres à bandes interdites photoniques actives et passives, à grande aire effective et destinées au transport ou à la génération de faisceaux lasers puissants.Une première partie du travail a porté sur l’étude d’une nouvelle géométrie de fibre micro-structurée - baptisée « fibre de Bragg pixélisée » - étudiée pour l’obtention d’un large cœur, monomode en pratique. Pour cette géométrie la fibre est rendue monomode en ajustant de façon optimale les distances entre les anneaux de haut indice de réfraction (condition dite demi-onde). Une première réalisation a permis de démontrer un diamètre de mode de 26μm à la longueur d'onde 1400nm dans une fibre passive. Un second aspect de ce travail a consisté en des études théoriques et expérimentales menées sur des fibres à bandes interdites photoniques présentant une gaine hétéro-structurée. Dans ces structures, la gaine comporte des résonateurs conçus pour éliminer les modes d’ordre supérieur par filtrage par les pertes. Des diamètres de mode allant de 19μm à 65μm ont ainsi été obtenus en régime monomode à 1050nm dans plusieurs fibres passives utilisées dans des bandes interdites photoniques différentes. Une fibre hétéro-structurée active a également été réalisée: le cœur, en silice pure dopée avec des ions ytterbium, a été obtenu via le procédé Sol-Gel. La fibre issue de cette réalisation a permis l’observation d’un effet laser avec une efficacité de 62.5%, pour un mode présentant un diamètre de 36μm. / These works concern the design and realization of micro-structured optical fibers, in particular, large mode area, active and passive, photonic bandgap fibers for high power laser beams generation and delivery. The first part of the work focused on the study of a new geometry of micro-structured fiber - so called "pixilated Bragg fiber" - in order to obtain a large, practically singlemode, core. For that geometry, the fiber is made singlemoded by optimizing the distances between the high index rings (Half wave stack condition). A first realization allowed to report a mode field diameter of 26μm measured at 1400nm wavelength in a passive fiber. The second aspect of this work included theoretical and experimental studies, of photonic bandgap fibers having a hetero-structured cladding. Specially designed resonators are added to the cladding of these fibers in order to eliminate higher order modes. Thus, 19μm to 65μm mode field diameters have been obtained in a singlemode regime at 1050nm wavelength for several passive fibers used in different bandgaps. An active fiber with hetero-structured cladding was also presented: the core was made of pure silica, ytterbium doped, synthesized using the Sol-Gel technique. The realized fiber allowed the observation of a laser emission with an efficiency of 62.5% and a mode field diameter of 36μm.
|
2 |
Modélisation et caractérisation de fibres de Bragg pixélisées pour application aux lasers intenses / Modeling and characterization of pixelated bragg fibers for intense lasers applicationYehouessi, Jean-Paul 09 November 2016 (has links)
Ces travaux portent sur la réalisation de fibres optiques à très grandes aires effectives pour applications aux lasers intenses. Les applications possibles de ces fibres sont le transport ou la génération de puissants faisceaux lasers. En se basant sur la famille de fibre optique appelée : "fibre de Bragg pixélisée", nous avons introduit le concept de double conditions demi-onde appliquée au mode d’ordre supérieur afin d’augmenter les pertes des modes LP11, LP21, LP02. Le principe d’hétérostructuration quant à lui a permis d’accentuer les pertes des modes d’ordre supérieur grâce à un effet de fuite. Ainsi donc, nous avons réalisé une fibre ayant un diamètre de cœur de 48 µm qui a permis l’obtention d’un diamètre de mode de 40 µm à la longueur d’onde 1050 nm. Dans un second temps, une géométrie de gaine plus simplifiée est proposée. Cette nouvelle géométrie de gaine nous a permis d’accéder à des diamètres de modes allant de 47 µm à 69 µm dans le cas de fibre à bande interdite photonique toutes solides. Ce dernier résultat constitue un diamètre de mode record dans le cas des fibres de Bragg toutes solides. / This work concern the design and the realization of large mode area fiber applied to high power laser. The goal of these fibers are the carrying and the generation of powerful beam laser. Based on special laser family called : "Pixaleted Bragg Fiber" we introduced the innovative concept of double half wave stack conditions applied to the higher order mode to increase the losses of LP11, LP21, LP02 modes. The principle of heterostructuration has been applied in order to increase losses of high order modes using the sieve effect. We succeeded in realizing a fiber with a core diameter of 48 µm, allowing mode field diameter of 40 µm at the wavelength 1050 nm. In the second time, cladding’s geometry has been simplified. This new generation of fiber gives us access to mode field diameter from 47 µm to 69 µm in the case of all solid bandgap fiber. This last result is up to now the highest mode field diameter produced for all solid bandgap fibers.
|
3 |
Etude d'un spéctromètre intégré SWIFTS pour réaliser des capteurs optiques fibrés pour les sciences de l'observation / Integrated spectrometer SWIFTS for photosensitive fiber sensors applied to observation sciencesMengin Fondragon, Mikhael de 18 November 2014 (has links)
SWIFTS (pour Stationary-Wave Integrated Fourier-Transform Spectrometer) est un concept de spectromètre s'appuyant sur l'optique intégrée pour proposer un système de mesure compact et de très haute résolution. Il combine une technique d'interférométrie développée par Gabriel Lippmann avec des technologies de microélectroniques actuelles. La technologie SWIFTS sera ici utilisée en tant qu'interrogateur de fibre de Bragg. En effet, combiner ce spectromètre avec des fibres de Bragg très sensibles, telle qu'une cavité Fabry-Perot à réseaux de Bragg (GFPC) d'une longueur de 20 mm, permettra de mesurer des variations de température et de déformation très précises. Les applications des fibres de Bragg sont nombreuses, particulièrement dans la surveillance de structure de génie civil ou dans la sureté nucléaire avec des précisions de l'ordre du microstrain. Cependant, les capteurs par fibres de Bragg n'ont jamais atteint la sensibilité nécessaire aux observations en science de la terre. Une précision de quelques dizaines de nanostrain serait pourtant d'un intérêt majeur dans l'étude des processus volcaniques et sismologiques. Je présente dans cette thèse la première utilisation d'un tel spectromètre de Fourier associé à des capteurs de Bragg pour mesurer des déformations dans différentes gammes allant du millistrain au nanostrain. Dans un premier temps, des déformations sur une petite structure en béton armé amenée jusqu'à l'état limite de fissuration permettront de qualifier différents capteurs à fibres de Bragg dans leur milieu d'usage. Dans un deuxième temps, des mesures de déformations liées au phénomène de la marrée terrestre sont proposées. Ces mesures, effectuées au Laboratoire Souterrain à Bas Bruit (LSBB) de Rustrel, donnent des précisions de l'ordre de 30 nanostrains sur une courte base et ouvrent la voie à d'autres mesures de phénomènes géophysiques pour cet instrument. / SWIFTS, or Stationary-Wave Integrated Fourier-Transform Spectrometer, is an extremely integrated very high resolution spectrometer. This spectroscopy technology represents a major advance in the field and will be used here as a Fiber Bragg Gratings interrogator. Combining such a spectrometer with very sensitive Bragg sensors, like grating Fabry-Perot cavity (GFPC) as long as 20 mm, will allow to measure high precision temperature or strain variation. Applications of Bragg sensors are numerous, especially in structure monitoring and nuclear power plants safety. Despite promising capabilities, Bragg sensors never reached the desired sensibility for earth-science observation purposes. Present applications are restricted to civil-engineering strain-gauge sensors with microstrain sensitivity. However, the ability to detect and record signals of the order of a few tens of nanostrain is of great interest to monitor and model the volcanic and seismological processes. I demonstrate in this thesis the first use of a Fourier-Transform spectrometer combined with Fiber Bragg Sensors in a field configuration to achieve extremely high precision measurement on earth's crustal deformation. Precisions of thirty nanostrains on a very short base were achieved in the Low-Noise Underground Laboratory (LSBB) at Rustrel. Crustal monitoring opens the way for numerous applications especially in geophysics. A second study presented in this thesis aims at benchmarking several strain sensors based on optical fiber Bragg grating. For this purpose, two reinforced concrete beams have been tested in three points bending up to ultimate limit state.
|
4 |
Etude du comportement dynamique des sources laser ultrarapides à base de fibres actives fortement dispersives / Study of the dynamic behavior of ultrafast laser sources from highly dispersive active fibersTang, Mincheng 23 June 2017 (has links)
Les lasers ultra-rapides fibrés sont aujourd’hui incontournables dans de nombreuses applications industrielles et scientifiques du fait de leur stabilité, de leur compacité et des hautes puissances disponibles. Les performances actuelles, rendues accessibles par le développement de fibres à larges aires modales et le concept d’amplification à dérive de fréquence, sont toutefois complexes à mettre oeuvre et limitées par l’utilisation de composants massifs pour les étapes de compression et d’étirement des impulsions. Ces travaux de thèse, à la fois expérimentaux et numériques, avaient pour objectif d’explorer des régimes dynamiques originaux basés sur l’utilisation de fibres actives spécifiques combinant large aire modale et propriétés dispersives adéquates pour la génération d’impulsions ultra-courtes de haute énergie. Les études numériques ont ainsi permis de montrer que des régimes impulsionnels à haute dispersion normale pouvaient être atteints en exploitant les phénomènes de résonnance et de couplage de modes dans des fibres de Bragg ou à profil en W. L’étude de l’influence des paramètres de la cavité laser sur le mécanisme de verrouillage de modes a permis d’identifier des configurations attractives pour la montée en puissance. La mise en oeuvre expérimentale de ces concepts a notamment permis le développement d’une source laser à soliton dissipatif produisant des impulsions énergétiques (38 nJ, 700 fs après compression) à des longueurs d’ondes autour de 1560 nm, record pour ce type d’oscillateur. La réalisation expérimentale de sources ultra-rapides basées sur des fibres actives spécifiques combinées au phénomène de couplage de mode ont permis d’identifier les potentialités et limitations de ces architectures originales à fortes dispersions totales pour la montée en énergie. / Ultrafast fiber lasers represent today a ubiquitous technology in various industrial and research applications thanks to their inherent advantages such as compactness, stability and high power. The best performances to date, mostly relying on large mode area fibers and chirped pulse amplification, however require complex experimental developments and are limited by the use of bulk components for pulse stretching and compression. The experimental and numerical work presented in this PhD thesis aimed at exploring original dynamical regimes based on specific active fibers combining large mode area and high dispersions for the generation of high-energy ultra-short pulses. The numerical studies then showed that pulsed regimes with high normal dispersions could be reached by exploiting resonance and mode-coupling phenomena in Bragg or W-type fibers. Studying the influence of the cavity parameters on mode-locking mechanisms allowed to target attractive configurations for energy scaling. The experimental implementation of this concept allowed the development of a dissipative soliton source delivering record high-energy chirped pulses (38 nJ, 700 fs after compression) at 1560 nm. The realization of ultrafast sources based on specific active fibers combined to mode-coupling phenomena then brought the possibility to identify the potentiality and limitations of these particular architectures with high dispersions for energy scaling.
|
Page generated in 0.0479 seconds