• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microstructure And Texture Evolution And Its Effect On Mechanical Properties In Dilute Magnesium Based AZ21 Alloy

Abdul Azeem, Mohd. January 2006 (has links)
Dilute Mg alloys are exclusively identified for wrought structural applications in automotive industry. Any improvement in mechanical properties of alloys is possible only by grain size refinement and by the development of suitable texture. The grain size, grain size anisotropy and texture in these alloys affect the compatibility stresses in a very complex manner. To launch a full scale study towards understanding the complex deformation mechanisms operating in these alloys, it is necessary to understand the effect of grain size and texture on the mechanical behavior of Mg alloys in a broad or semi-quantitative manner first. Current literature lacks such broad study. In this present study, the effect of grain size, grain size anisotropy and texture evolution on the mechanical properties are examined in order to develop an understanding of the deformation mechanism that control the mechanical properties of a dilute conventionally extruded Mg alloy, AZ21. The approach adopted was to first study the microstructure and texture evolution in this conventionally extruded alloy. Since the grain sizes in these alloys vary over a wide range, it is hence necessary to study the microstructure evolution in a highly quantitative manner. In understanding texture, the present study is only limited to qualitatively evaluating the evolution of fibre component of texture using X-Ray Diffraction spectra. For truly quantitative microstructure evolution results in materials were grains sizes are spread over a wide range, it is critical to study a statistically enough no. of grains. Hence to avoid any sampling error, large montages (about 0.3 sq. mm) were constructed out of a series of high resolution images captured using an optical microscope. The montages so constructed are subjected to extensive image enhancement and various other operations are performed to convert these coloured to binary montages. Information like grain size, diameter etc., can be easily extracted from these binary montages and used for further analysis. Fibre texture in these conventionally extruded dilute Mg alloys generally develops due to alignment of basal planes along the direction of extrusion. The Critical Resolved Shear Stress for basal slip is very low when compared to that of non-basal planes. And also since there are very limited primary slip systems in these dilute Mg alloys, the development of strong fibre texture drastically changes the compatibility stresses and hence the mechanical properties . To broadly study the effect of microstructure-texture on mechanical proerties, after post extrusion annealing, heat treatments representing typical microstructure-texture combinations were identified. Effect of each microstructure-texture combination on the tensile and completely reversed cyclic fatigue properties are studied and qualitatively interpreted. The fibre texture showed pronounced effect on tensile ductility but it hardly affected the yield strength. With just 10% reduction in BPI, the ductility reduced by about 50%. A small change in average grain size did not alter the yield strength. Unlike tensile ductility, fatigue endurance stress was not altered drastically by the change in grain size or texture. But there appeared to be a significant effect of residual stress. In ending, a small change in microstructure-texture combination in these conventionally extruded alloys has a pronounced effect on ductility or in other words plastic properties. But a it has minimal effect on yield strength and fatigue endurance stress.
2

Microstructure, texture and mechanical property evolution during additive manufacturing of Ti6Al4V alloy for aerospace applications

Antonysamy, Alphons Anandaraj January 2012 (has links)
Additive Manufacturing (AM) is an innovative manufacturing process which offers near-net shape fabrication of complex components, directly from CAD models, without dies or substantial machining, resulting in a reduction in lead-time, waste, and cost. For example, the buy-to-fly ratio for a titanium component machined from forged billet is typically 10-20:1 compared to 5-7:1 when manufactured by AM. However, the production rates for most AM processes are relatively slow and AM is consequently largely of interest to the aerospace, automotive and biomedical industries. In addition, the solidification conditions in AM with the Ti alloy commonly lead to undesirable coarse columnar primary β grain structures in components. The present research is focused on developing a fundamental understanding of the influence of the processing conditions on microstructure and texture evolution and their resulting effect on the mechanical properties during additive manufacturing with a Ti6Al4V alloy, using three different techniques, namely; 1) Selective laser melting (SLM) process, 2) Electron beam selective melting (EBSM) process and, 3) Wire arc additive manufacturing (WAAM) process. The most important finding in this work was that all the AM processes produced columnar β-grain structures which grow by epitaxial re-growth up through each melted layer. By thermal modelling using TS4D (Thermal Simulation in 4 Dimensions), it has been shown that the melt pool size increased and the cooling rate decreased from SLM to EBSM and to the WAAM process. The prior β grain size also increased with melt pool size from a finer size in the SLM to a moderate size in EBSM and to huge grains in WAAM that can be seen by eye. However, despite the large difference in power density between the processes, they all had similar G/R (thermal gradient/growth rate) ratios, which were predicted to lie in the columnar growth region in the solidification diagram. The EBSM process showed a pronounced local heterogeneity in the microstructure in local transition areas, when there was a change in geometry; for e.g. change in wall thickness, thin to thick capping section, cross-over’s, V-transitions, etc. By reconstruction of the high temperature β microstructure, it has been shown that all the AM platforms showed primary columnar β grains with a <001>β.

Page generated in 0.0386 seconds