Spelling suggestions: "subject:"fibre dde line"" "subject:"fibre dde link""
1 |
Formulation et caractérisation d'un composite cimentaire biofibré pour des procédés de construction préfabriquée / Design and characterisation of a plant-fibre-reinforced cementitious composite for prefabricated construction processesPage, Jonathan 11 December 2017 (has links)
Les enjeux économiques liés à la hausse des coûts des ressources fossiles, leur raréfaction, et les impacts environnementaux inhérents à leur fabrication et à leur utilisation, conduisent les acteurs de la construction à s’orienter vers des matériaux biosourcés. Les ressources issues de la biomasse sont alors au premier plan, celles agricoles notamment, dont les fibres provenant des tiges des plantes. Parmi ces fibres, le lin se démarque en raison de ses propriétés mécaniques élevées et sa faible densité, et sa disponibilité en Normandie. L’objectif de cette étude est de développer un matériau composite innovant par l’association des fibres de lin à une matrice cimentaire, qui sera utilisé dans des procédés de construction préfabriquée. Après la caractérisation fine des constituants de départ, nous avons d’abord décrit en détail l’élaboration des mortiers et bétons biofibrés avec un focus sur la méthodologie de formulation. Puis nous avons analysé l’influence de l’incorporation des fibres de lin sur les propriétés rhéologiques (air occlus, consistance, ouvrabilité et fluidité) et physico-chimiques (pH, ATG). Les propriétés physiques (porosité, module d’élasticité) et mécaniques (contraintes à la rupture, indice de ténacité) ont été mesurées par des essais de flexion et de compression à l’état durci. Ces résultats montrent nettement que la présence des fibres de lin réduit de façon importante les propriétés technologiques des pâtes cimentaires, du fait la sensibilité des fibres au milieu très alcalin et de leur caractère fortement hydrophile. Bien que les traitements de surface des fibres expérimentés (plasma atmosphérique, enrobage coulis de ciment et laitier de hauts fourneaux ou à l’huile de lin) aient permis d’améliorer certaines propriétés des mortiers, ils n’ont pas permis de réduire dans le temps la dégradation des fibres au sein de la matrice cimentaire (hydrolyse alcaline des fibres et leur minéralisation sous l’action de l’hydroxyde de calcium). Il apparaît donc nécessaire de recourir à des liants alternatifs pour tenter d’améliorer la durabilité de ces biocomposites à fibres végétales. Ainsi, de nouvelles formulations de mortiers et bétons sont proposées, dans lesquelles le ciment Portland est remplacé partiellement par le métakaolin / le laitier de hauts fourneaux ou totalement par un ciment sulfo-alumineux, sans préjudices pour le comportement rhéologique. L’étude des nouveaux composites formulés avec le métakaolin ou le ciment sulfo-alumineux indique des niveaux de résistance mécanique et de ténacité élevés. Leurs résistances au gel supérieures au béton classique ou celui incorporant des fibres de verre tient à la forte teneur en air (les fibres jouent un rôle d’agent entraîneur d’air). / The economic issues linked to the rising costs of fossil resources, their scarcity, and the environmental impacts inherent in their manufacture and use, are leading the construction industry to move towards bio-based materials. The resources from biomass are then in the foreground, especially agricultural ones, including fibres from plants stems. Among these fibres, flax stands out because of its high mechanical properties and low density, and its availability in Normandy. The objective of this study is to develop an innovative composite material by combining flax fibres with a cement matrix, which will be used in prefabricated construction processes. After the fine characterization of the initial constituents, we first described in detail the development of plant fibre-reinforced mortars and concretes with a focus on the formulation methodology. Then we analysed the influence of the incorporation of flax fibres on the rheological properties (entrapped air, consistency, workability) and physico-chemical properties (pH, ATG). The physical properties (porosity, modulus of elasticity) and mechanical properties (compressive and tensile strength, toughness index) were measured by bending and compressive tests in the hardened state. These results clearly show that the presence of flax fibres significantly reduces the technological properties of cementitious pastes, because of the sensitivity of the fibres to the highly alkaline medium and their highly hydrophilic nature. The surface treatments of the experimental fibres (by using atmospheric plasma, cement grout coating, blast furnace slag or linseed oil) have effectively improved some properties of mortars, the degradation of the fibres within the cement matrix remain active over the long term (alkaline hydrolysis of the fibres and their mineralization under the action of calcium hydroxide). It therefore appears necessary to use alternative binders in an attempt to improve the durability of these plant fibre biocomposites. Thus, new formulations of mortars and concretes are proposed, in which the Portland cement is partially replaced by metakaolin / blast furnace slag or totally by sulfoaluminate cement, without prejudice to the rheological behaviour. The study of the new composites formulated with metakaolin or sulfoaluminate cement indicates high levels of mechanical strength and toughness. Their resistance to frost superior to conventional concrete or concrete incorporating glass fibres is due to the high air content (the fibres act as an air-entraining admixture).
|
2 |
Modification of flax fibres for the development of epoxy-based biocomposites : Role of cell wall components and surface treatments on the microstructure and mechanical properties / Modification de fibres de lin pour le développement de bio-composites à matrice époxy : Rôle des composants des parois cellulaires et des traitements de surface sur la microstructure et les propriétés mécaniquesAcera Fernandez, José 15 December 2015 (has links)
Les fibres végétales peuvent être considérées comme une alternative intéressante aux fibres de verre pour la fabrication de matériaux composites. En effet, elles présentent des caractéristiques physiques intéressantes, telles que leur faible densité et leurs bonnes propriétés mécaniques spécifiques, qui peuvent rivaliser avec les composites renforcés de fibres de verre. En outre, les fibres végétales sont obtenues à partir de ressources renouvelables, et présentent généralement moins d'impacts environnementaux lors de leurs phases de production, d’utilisation et en fin de vie. Contrairement aux fibres de verre, les fibres végétales, telles que des fibres de lin, présentent des structures hiérarchiques complexes composées essentiellement de cellulose, hémicellulose, lignine, ciments peptiques et extractibles lipophiliques (cires, acides gras, etc.). Cette composition varie selon les espèces, le lieu et les conditions de croissance, la maturité de la plante, etc. De la même façon, la composition biochimique et la structure des produits et des sous-produits issus du lin sont soumis à de grandes variations selon les étapes successives de transformation réalisées à partir des tiges de lin jusqu’aux fils et tissus. Cela influence fortement les propriétés finales des fibres de lin et de leurs biocomposites. La première partie de cette étude se concentre sur la caractérisation de fibres de lin au cours de leurs étapes successives de transformation. Une homogénéisation de la composition chimique est observée dans les étapes finales de transformation, ainsi qu’une augmentation des propriétés en traction longitudinale des mèches de fibres de lin. La deuxième partie traite de l'utilisation de différents traitements de lavage appliqués sur des tissus d’étoupes de lin et leur influence sur l'extraction des composants de la paroi cellulaire des fibres, ainsi que sur la microstructure et les propriétés mécaniques de biocomposites époxy/lin. Il est montré que les composants de la paroi cellulaire jouent un rôle clé dans la dispersion des mèches et des fibres élémentaires de lin et sur le comportement mécanique transversal de leurs biocomposites. Enfin, l'application de différents traitements de fonctionnalisation sur des tissus de fibre de lin est étudiée afin d'améliorer l'adhérence interfaciale entre les fibres et la matrice. L'utilisation de molécules de type organosilanes (aminosilane, époxysilanes) et de molécules biosourcés (acides aminés et polysaccharides) est étudiée. Une augmentation de la rigidité en traction longitudinale et de la rigidité et de la contrainte maximale en traction transverse est observée en raison de l'amélioration de l'adhésion interfaciale par la fonctionnalisation de surface des fibres avec des molécules d'origine biosourcé et non-biosourcé. / Natural fibres can be considered as a relevant alternative to glass fibres in the manufacture of composite materials. Indeed, they present interesting physical characteristics, such as low density and good specific mechanical properties, which can compete with glass fibre reinforced composites. Moreover, natural fibres are obtained from renewable resources, and generally present lower environmental impacts during their production and use phases and their end of life. Unlike glass fibres, natural fibres, such as flax fibres, are complex hierarchical materials composed essentially of cellulose, hemicellulose, lignin, peptics cements and lipophilic extractives (waxes, fatty acids, etc.). This composition varies among species, collection site, plant maturity, batches, etc. Besides, the biochemical composition and structure of flax products and sub-products undergo wide variations according to the transformation steps from stems to yarns and fabrics. This influences greatly the final properties of flax fibres and their biocomposites. The first part of this study is focused on the characterization of flax fibres during their successive transformation steps. A homogenization of the chemical composition is observed at the final transformation steps, as well as an increment of the longitudinal tensile properties of flax yarns. The second part deals with the use of different washing treatments applied on flax tow fabrics and their influence on the extraction of flax cell wall components and the resulting microstructure and mechanical properties of epoxy/flax fibres reinforced biocomposites. It is shown that cell wall components play a key role in the flax yarns and elementary fibres dispersion and transverse mechanical behaviour of biocomposites. Finally, the application of different functionalization treatments onto flax fibres fabrics is investigated in order to improve the interfacial adhesion between fibres and matrix. The use of non-bio-based organosilane molecules (aminosilane, epoxysilane) and bio-based molecules (amino-acids and polysaccharides) is studied. Improvedstiffness in longitudinal tension test and stiffness and tensile strength in transverse tension test are observed due to the improvement of interfacial adhesion by surface functionalization of the fibres with both bio-based and non-bio-based molecules.
|
3 |
Approche de l'impact des matériaux bio-sourcés sur la qualité perçue des produits : cas de la fibre de lin / Approach of bio-sourced materials impact on product's perceived quality : the case of flax fiberAvramescu, Ana-Maria 13 December 2013 (has links)
Dans un contexte d’éco-conception, les efforts d’innovation amènent de nouveaux matériaux dits bio-sourcés qui participent à réduire l’impact des produits sur l’environnement. S’agissant de nouveaux matériaux, l’innovation porte également sur l’amélioration de la qualité perçue par le consommateur. Le challenge est donc de concevoir des produits respectueux de l’environnement à l’aide de nouveaux matériaux écologiques tout en garantissant une qualité perçue au moins identique à celle des matériaux synthétiques classiques. Le design sensoriel, par l’utilisation de l’évaluation sensorielle, est l’une des disciplines qui permet de prendre en compte le ressenti sensoriel des consommateurs. Cependant, dans la littérature, peu de travaux portent sur l’application des méthodes d’évaluation sensorielle à des matériaux bio-sourcés. Face à ce constat, nos travaux se proposent d’étudier la possibilité d’évaluer, avec des méthodes d’analyse sensorielle, un matériau bio-sourcé à base de fibres de lin de la même manière qu’un synthétique à base de fibres de verre. Plus précisément, nos travaux proposent une approche basée sur une évaluation sensorielle tactile et une évaluation instrumentale objective de la surface de ces deux matériaux. Nos résultats ont permis de valider l’application des méthodes d’évaluation sensorielle tactile sur un matériau bio-sourcé. Nos travaux ont permis la définition de profils sensoriels pour le toucher concernant le matériau à base de fibres de lin. Les résultats obtenus ont aussi permis de valider la possibilité de corréler certains indicateurs tactiles subjectifs avec des mesures instrumentales objectives. L’ensemble des connaissances développées dans le cadre de ces travaux offre aux concepteurs une aide précieuse dans le choix des matériaux bio-sourcés en éco-conception et plus généralement en conception de produits. / In the eco-design context, innovation efforts come with new bio-sourced materials that are meant to reduce products’ environmental impact. Insofar as these products are made with new materials, the innovation is also concerned about their perceived quality by consumers. More precisely, the challenge is to reach a compromise between environmental and marketing issues. Indeed, to be satisfying, the perceived quality of the environmental-friendly products has to be similar to the one of products made with classical synthetic materials. Sensorial design, through sensorial evaluation, is the academic discipline that takes into account the sensorial consumers’ perception. However, very few previous studies were led concerning the application of sensorial evaluation methods to bio-sourced materials. The present work proposes to make up for this lack of knowledge. More precisely, we evaluate both a flax fiber bio-sourced material and a glass fiber synthetic material using the same sensorial analysis methods. This evaluation combines a subjective sensorial tactile evaluation to an objective instrumental evaluation of both these materials’ surfaces. The results validated the application of tactile sensorial evaluation methods to a bio-sourced material. Moreover, tactile sensorial profiles were defined for flax fiber bio-sourced materials. Results also enabled to correlate subjective tactile measures with tactile objective instrumental measures. The present gathered knowledge offer, to designers concerned with eco-design and more generally by product design process, a new valuable bio-sourced material decision making aid.
|
4 |
Approche de l'impact des matériaux bio-sourcés sur la qualité perçue des produits : cas de la fibre de linAvramescu, Ana-Maria 13 December 2013 (has links) (PDF)
Dans un contexte d'éco-conception, les efforts d'innovation amènent de nouveaux matériaux dits bio-sourcés qui participent à réduire l'impact des produits sur l'environnement. S'agissant de nouveaux matériaux, l'innovation porte également sur l'amélioration de la qualité perçue par le consommateur. Le challenge est donc de concevoir des produits respectueux de l'environnement à l'aide de nouveaux matériaux écologiques tout en garantissant une qualité perçue au moins identique à celle des matériaux synthétiques classiques. Le design sensoriel, par l'utilisation de l'évaluation sensorielle, est l'une des disciplines qui permet de prendre en compte le ressenti sensoriel des consommateurs. Cependant, dans la littérature, peu de travaux portent sur l'application des méthodes d'évaluation sensorielle à des matériaux bio-sourcés. Face à ce constat, nos travaux se proposent d'étudier la possibilité d'évaluer, avec des méthodes d'analyse sensorielle, un matériau bio-sourcé à base de fibres de lin de la même manière qu'un synthétique à base de fibres de verre. Plus précisément, nos travaux proposent une approche basée sur une évaluation sensorielle tactile et une évaluation instrumentale objective de la surface de ces deux matériaux. Nos résultats ont permis de valider l'application des méthodes d'évaluation sensorielle tactile sur un matériau bio-sourcé. Nos travaux ont permis la définition de profils sensoriels pour le toucher concernant le matériau à base de fibres de lin. Les résultats obtenus ont aussi permis de valider la possibilité de corréler certains indicateurs tactiles subjectifs avec des mesures instrumentales objectives. L'ensemble des connaissances développées dans le cadre de ces travaux offre aux concepteurs une aide précieuse dans le choix des matériaux bio-sourcés en éco-conception et plus généralement en conception de produits.
|
5 |
Étude expérimentale et modélisation de la durabilité des biocomposites à fibres de lin / Experimental study and modelling of the durability of flax fibre reinforced biocompositesChilali, Abderrazak 27 June 2017 (has links)
Dans cette étude doctorale, nous proposons d’étudier la durabilité de deux matériaux composites à matrices thermodurcissable et thermoplastique renforcées par des tissus sergé de lin. Nous analysons d’abord la cinétique de diffusion d'eau dans les deux composites par identification de leurs paramètres de diffusion 3D, via une approche d’optimisation basée sur les modèles de Fick et de Langmuir 3D. Nous étudions ensuite l’effet de plusieurs paramètres géométriques et l’orientation des fibres sur la cinétique de diffusion d’eau au sein des deux composites. Nous analysons par la suite l'effet du vieillissement hydrique sur leurs propriétés élastiques et à la rupture. Enfin, nous proposons une analyse numérique par éléments finis de la diffusion d’eau au sein des deux composites et de leur comportement hydro-élastique. Nous estimons ainsi les paramètres de diffusion de la fibre de lin et des matrices à travers une approche numérique inverse, en décrivant la section et l’ondulation des mèches de lin au sein des deux matériaux. Nous montrons en particulier que les composites non vieillis présentent un comportement mécanique proche de l'effet Kaiser. Cependant, les composites vieillis présentent clairement un effet Felicity, ce qui indique la présence significative d’endommagements induits par l’absorption d'eau. Nous affirmons enfin que l’analyse numérique permet d’identifier d’importantes concentrations de contraintes pouvant induire des endommagements microstructuraux au sein des composites étudiés. / In this thesis work, we study the durability of two twill flax fabrics reinforced thermosetting and thermoplastic composites. Firstly, the diffusion behaviour of these composites is investigated by identifying their 3D Fick’s and Langmuir’s diffusion parameters using an optimization algorithm. The influence of several geometric parameters and fibre orientation on their 3D moisture diffusion is also studied. Then, we analyse the effect of water ageing on their elastic and failure properties. Finally, a numerical finite element analysis is performed in order to study their diffusive and hydro-mechanical behaviour. The water diffusion parameters of the flax fibre and the used resins are estimated by a numerical inverse analysis exploiting experimental water uptake data. The heterogeneity of the studied composites is considered by modelling the twill weave fabrics undulation of their unit-cell. In particular, the mechanical behaviour of the unaged composites is found to exhibit a Kaiser effect contrary to the aged materials which exhibit a significant Felicity effect synonymous of substantial damage induced by water ageing. Besides, it is found that high mechanical stress concentrations are developed at the fibre-matrix interface, which could cause damage initiation and lead to the final composite failure.
|
6 |
Analyse et modélisation du choix des renforts pour optimiser la mise en forme de matériaux composites à base de fibres végétales / Modelling and experimental analysis of reinforcements for the optimization of the shape forming process of composite materials based on plant fibresBassoumi, Amal 06 October 2016 (has links)
Cette thèse s’inscrit à mi-chemin entre l’étude de la déformabilité des structures tissées et la valorisation de la fibre de lin pour des applications dans le renforcement des matériaux composites. Le premier objectif de l’étude est de caractériser expérimentalement le comportement en flexion des mèches de différentes structures constituées de fibres de lin ainsi que des tissus de différentes armures. Les travaux ont abordé aussi des paramètres tels que l’humidité relative et la composition (des mèches comélées ou en lin pure). Le deuxième objectif des travaux est d’étudier le comportement en flexion des tissus en fonction du comportement en flexion des mèches. Cette partie a commencé par la modélisation géométrique des renforts tissés dans le but de suivre l’évolution de la section du tissu qui varie dans la direction de la flexion. La modélisation mésoscopique a permis de calculer analytiquement les propriétés géométriques du tissu en particulier son moment quadratique. Les résultats obtenus ont été utilisés dans la simulation de la flexion du tissu. L’étude a permis de voir jusqu’à quel point le comportement de la mèche et le moment quadratique du tissu pilotent le comportement en flexion du tissu. D’après ces travaux, le comportement en flexion du tissu semble être approché de façon satisfaisante sur toute la gamme de longueurs envisagées à partir de ces deux grandeurs sauf pour les forts taux d’humidité où d’autres phénomènes doivent être considérés. L’étude a souligné que la différence entre deux renforts testés expérimentalement peut être anticipée numériquement. Ainsi, le concepteur de tissus sera capable d’anticiper la rigidité expérimentale du tissu pour faire des tissages adaptés à la mise en forme du renfort. Une étude paramétrique de la flexion a été également réalisée dans le but de déduire les paramètres les plus influents sur lesquels il peut jouer. / This thesis is halfway between the study of the deformability of woven structures and the use of flax fibre as reinforcement of composite materials. The first aim of the study is the experimental characterization of the bending behaviour of tows with different structures made of flax fibres and fabrics with different weaves. Parameters such as relative humidity and the composition (100% flax and commingled tows) were also considered. The second aim of the study is to link the bending behaviour of the fabric to the bending behaviour of its constituent tows. This part starts with the geometric modelling of woven fabrics in order to follow the variation of its section in the bending direction. Mesoscopic modelling allows the analytical calculation of the geometric properties of the fabric in particular its moment of inertia. The results obtained were used in the simulation of the fabrics bending to see how far the behaviour depends on the tows bending behaviour and the moment of inertia. The bending behaviour of the fabric seems to be approached satisfactorily from these two factors. This is verified within the range of lengths considered except for high humidity (in this case, other phenomena must be considered). The study pointed out that the difference between two reinforcements tested experimentally can be predicted numerically. Thus, the fabrics designer will be able to anticipate the experimental bending stiffness of the fabric in order to adapt the weaving to the shape forming. A parametric study of the bending was also achieved in order to deduce the most influential parameters of the fabric for an appropriate weaving.
|
7 |
Effet de l'oxydation TEMPO des fibres de lin sur l'efficacité de greffage des agents de couplage silane / TEMPO oxidation effects of flax fibers on the efficiency of grafting of silane coupling agentsHarirforoush, Mohammad Javad January 2017 (has links)
Abstract : The applications of natural fibers as reinforcing materials have received lots of attentions and
interests due to their unique advantages such as direct derivation from earth, sustainability,
degradability and so on. In addition, the employment of plant fibers as raw materials in engineering
and industries can promote sustainable agriculture. Cultivation of oilseed flax has grown recently
from 600,000 to 800,000 hectares in past few years in Canada. This can also provide a great
potential to use flax waste (straw), 2,000 kg/ha annually, as reinforcing materials in industry and
promote sustainable agriculture. These huge amounts of flax residuals usually burned or thrown
away which as result, leads to emission of CO2 into the atmosphere.
In two past decades, the employment of natural fibers in bio-composites as an alternative for flax
residuals disposal has received lots of interest and attention. The dramatic increase of publications
during this period supports this fact. This attention and interest has been attributed to public
awareness, Legal restrictions and environmental concerns associated to the synthetic fibers.
Moreover, the significant advantages of natural fibers such as low resin consumption, low tools
wear, cost effectivity; availability, environmentally friendly, degradability, low density and high
specific properties have converted the application of them very favorable.
However, the hydrophilic nature of cellulosic fibers as a main disadvantage makes them
incompatible with hydrophobic polymeric matrices. This poor compatibility between cellulosic
fibers and polymeric matrices mostly attributes to the presence of hydroxyl functional groups on
the backbone of the flax fibers that causes to hydrophilic properties of cellulosic fibers and poor
interfacial adhesion between cellulosic fibers and polymeric matrices.
The main goal of this research thesis is to convert of primary alcoholic groups (OH) available on
the surface of flax fiber to carboxyl groups by employment of TEMPO oxidation system in order
to facilitate the silane treatment process. Subsequently, carboxyl groups can more easily interact
with silane coupling agents. The surface functionality of as-received and treated fibers was
characterized using Fourier transform infrared and X-ray photoelectron spectroscopy.
Dynamic contact angle tensiometer was used to compare wettability of the oxidized and nonoxidized
fibers after the silane treatment. The interaction between flax fiber and polymer was
characterized using scanning electron microscopy (SEM). The results indicated that the TEMPO
iii
oxidation significantly improved the bonding efficiency of the silane coupling agents on the fiber
surface. Thus, the compatibility between the flax fibers and the epoxy resin was improved. In
addition, the water absorption of the modified fibers was remarkably reduced, while the contact
angle of the flax fibers was increased. / Les demandes des fibres naturelles comme matériaux de renforcement ont reçu beaucoup d'attentions et d'intérêts en raison de leurs avantages uniques tels que la dérivation directe de la terre, la durabilité, la dérivabilité, etc. En outre, l'emploi des fibres végétales comme matières premières dans l'ingénierie et les industries peut favoriser l'agriculture durable. La culture du lin oléagineux est passée de 600 000 à 800 000 hectares au cours des dernières années au Canada. Cela peut également constituer un excellent potentiel d'utilisation des déchets de lin (paille), 2 000 kg par an par année, en tant que matériaux de renfort dans l'industrie et promouvoir l'agriculture durable. Ces énormes quantités de résidus de lin sont généralement brûlées ou jetées, ce qui entraîne l'émission de CO2 dans l'atmosphère.
Au cours des deux dernières décennies, l'emploi de fibres naturelles dans les biocomposites comme possibilité à l'élimination des résidus de lin a suscité beaucoup d'intérêt et d'attention. L'augmentation spectaculaire des publications au cours de cette période prend en charge ce fait. Cette attention et cet intérêt ont été attribués à la sensibilisation du public, aux restrictions légales et aux préoccupations environnementales associées aux fibres synthétiques. En outre, les avantages importants des fibres naturelles, comme la faible consommation de résine, l'usure des outils, l'efficacité des coûts; la disponibilité, l'environnement, la dégradabilité, la faible densité et les propriétés spécifiques élevés ont transformé la demande des fibres naturelles très favorable.
Cependant, la nature hydrophile des fibres cellulosiques comme inconvénient principal les rend incompatibles avec des matrices polymères hydrophobes. Cette mauvaise compatibilité entre les fibres cellulosiques et les matrices polymères attribue principalement à la présence de groupes fonctionnels hydroxyles sur l'ossature des fibres de lin qui provoque des propriétés hydrophiles des fibres cellulosiques et une faible adhérence interfaciale entre les fibres cellulosiques et les matrices polymères.
L'objectif principal de cette thèse de recherche est de convertir des groupes alcooliques primaires (OH) disponibles à la surface de la fibre de lin en groupes carboxylés par l'emploi d'un système d'oxydation TEMPO afin de faciliter le traitement du silane. Par la suite, les groupes carboxylés peuvent interagir plus facilement avec des agents de couplage au silane. La fonctionnalité de surface des fibres reçues et traitées a été caractérisée en utilisant la spectroscopie à infrarouge à transformer de Fourier et à la Spectrométrie photo électronique X.
Un tensiomètre à angle de contact dynamique a été utilisé pour comparer la mouillabilité des fibres oxydées et non oxydées après le traitement au silane. L'interaction entre les fibres de lin et le polymère a été caractérisée en utilisant une microscopie électronique à balayage (MÉB). Les résultats indiquent que l'oxydation TEMPO a considérablement amélioré l'efficacité de liaison des agents de couplage silane sur la surface de la fibre. Ainsi, la compatibilité entre les fibres de lin et la résine époxy a été améliorée. En outre, l'absorption d'eau des fibres modifiées a été considérablement réduite, tandis que l'angle de contact des fibres de lin a été augmenté.
|
Page generated in 0.0906 seconds