1 |
Polymer Directed Engineering of Novel Cellulose Network / Polymerstyrd konstruktion av nya cellulosanätverkGradin, Christel, Landström, Adina, Szecsödy, Julia January 2021 (has links)
This study investigated a CNF/dendrimer hydrogel and how different concentrations of the carboxylated CNF and bis-MPA ammonium dendrimer affected the hydrogels’ rheological properties. A third generation bis-MPA ammonium dendrimer was diffused into a dispersion of carboxylated cellulose nanofibrils. The CNF was carboxylated by TEMPO-oxidation and phosphate buffer deprotonating the carboxylic group. The ammonium dendrimers are cationic and, when added to the dispersion, act as a salt together with the CNF-carboxy anion creating a cationic dendrimer salt bridge. These will serve as physical crosslinks, and a CNF/dendrimer network is formed; the structure and the absorbed water make a hydrogel. Amplitude strain sweeps were performed with a rheometer to determine the gels' elastic capabilities in terms of storage modulus, G’ and loss modulus, G” as the function of the shear stress. The result shows that a higher concentration of both CNF dispersion and dendrimer yielded a higher value of the storage modulus and a lower critical strain, meaning that the hydrogel becomes firmer and less elastic. / I denna studie undersöktes en CNF/dendrimer hydrogel och hur olika koncentrationer av den karboxylerade CNF och bis-MPA ammonium dendrimer påverkar hydrogelens reologiska egenskaper. En tredje generations bis-MPA ammonium dendrimer läts diffusera i en dispersion av karboxylerade cellulosa nanofibriller (CNF). CNF karboxylerades via TEMPO-oxidation, varefter en fosfatbuffer adderades för att skapa en anjon. Dendrimerens ammoniumgrupper är katjoner och då den adderas till dispersionen kommer den agera som ett salt tillsammans med CNF-karboxyanjonen vilket skapar en katjonisk dendrimersaltbrygga. Denna agerar som en fysisk tvärbindning och skapar ett nätverk av CNF och dendrimer. Nätverket skapar tillsammans med det absorberade vattnet en hydrogel. En amplitude strain sweep utfördes för att bestämma gelernas viskoelastiska förmåga, från mätningarna fås elasticitetsmodulen, G’ och den viskösa modulen, G’’ som funktioner av skjuvningen. Resultatet visar att en högre koncentration av CNF-dispersionen och dendrimeren leder till ett högre värde på elasticitetsmodulen samt ett lägre värde för den kritiska skjuvningen. Detta innebär att hydrogelen blir hårdare och mindre elastisk.
|
2 |
Property prediction of super-strong nanocellulose fibers / Förutsägning av egenskaper hos superstarka nanocellulosafibrerAbada, Maria, Fossum, Elin, Brandt, Louise, Åkesson, Anton January 2020 (has links)
The innovative technology behind production of strong biofilaments involves the process of spinning filaments from nanoparticles extracted from wood. These nanoparticles are called cellulose nanofibrils (CNFs). The spun filaments can have high mechanical properties, rivaling many other plant based materials, and could be an environmentally friendly replacement for many materials in the future such as fabrics and composites. Before mass production might be possible, the optimal dispersion properties must be determined for the intended use, with regard to concentration, method of oxidation (TEMPO-oxidation or carboxymethylation) and pretreatment through sonication and centrifugation. In this bachelor’s thesis attributes of spun filaments were investigated in order to find a correlation between mechanical properties and the effects of concentration, method of oxidation as well as sonication and centrifugation of the dispersions. The mechanical properties were also compared to the fibrils’ ability to entangle and align during flow-focusing. A variety of analytical methods: flow-stop, tensile testing, scanning electron microscopy (SEM) and wide angle X-ray scattering (WAXS) were implemented for the dispersions and filaments. The results from this study show that flow-stop analysis could be used to determine which CNF dispersions are spinnable and which are non-spinnable, along with which spinnable dispersion would yield the strongest filament. It was also concluded that crystallinity of fibrils affects the mechanical properties of filaments and that TCNFs are generally more crystalline than CMCs. Pretreatment through sonication and centrifugation seems to have a negative impact on spinnability and sonication in combination with low concentration seems to lead to non-spinnable conditions. On the other hand, sonicated dispersions seem to yield a greater number of samples without aggregates than non-sonicated ones. Aggregates, however, seem to only affect ultimate stress out of the measured mechanical properties. Furthermore, concentration and viscosity affect spinnability and CMC dispersions seem to yield thicker filaments than TCNF dispersions. However, due to lack of statistically validated data any definitive conclusions could not be drawn.
|
3 |
Assemblages thermostimulables de nanocristaux de cellulose décorés de chaînes de polymère / thermoresponsive assembly of polymer-grafted cellulose nanocrystalsAzzam, Firas 05 December 2012 (has links)
Les nanocristaux de cellulose (NCC), obtenus par hydrolyse acide des microfibrilles de cellulose native sous forme de suspensions colloïdales aqueuses, sont des nanoparticules biosourcées ayant des propriétés mécaniques et optiques particulièrement séduisantes pour la conception de nanomatériaux à haute performance. Pour éliminer certaines de leurs limitations comme la sensibilité au sel et l'absence de contrôle de leurs interactions, nous nous sommes attachés au cours de ce travail à modifier chimiquement ces NCC par greffage de chaînes de polymère thermosensible de la famille de polyétheramines Jeffamine® sur leur surface. La première méthode de greffage utilisée faisait appel à une oxydation TEMPO suivie d'un couplage peptidique. Après l'optimisation de la réaction de greffage, les nouveaux systèmes (NCC-g-Jeffamine) ont été caractérisés et de nouvelles propriétés ont été identifiées notamment leur insensibilité au sel, leur capacité de redispersion dans des solvants organiques, leur caractère tensioactif, leur stabilité thermique améliorée ainsi que leur thermoagrégation réversible. L'étude structurale par diffusion des neutrons aux petits angles a permis d'avoir des informations sur les épaisseurs des couches de polymère greffé ainsi que sur la conformation des chaînes. De nouvelles caractéristiques de l'auto-organisation en phase chirale-nématique de ces nouveaux systèmes ont été notées concernant leur diagramme de phase et leur pas cholestériques. La deuxième méthode de greffage explorée consistait en une oxydation aux ions métapériodate suivie d'une amination réductrice. Les résultats ont montré un détachement partiel des chaînes de cellulose suite à l'oxydation puis leur détachement complet après le greffage du polymère pour obtenir des copolymères cellulose-Jeffamine ayant éventuellement des propriétés intéressantes à étudier. / Cellulose nanocrystals (CNC), obtained by acid hydrolysis of native cellulose microfibrils as colloidal aquous suspensions, are bioresourced nanoparticles that have great mechanical and optical properties well adapted for the conception of new nanomaterials with high performance. In order to eliminate some of their limitations like sensitivity to salt and absence of interactions control, we studied in this work the chemical modification of these CNC by grafting thermoresponsive polymer chains (polyetheramines Jeffamine®) on the their surface. A first grafting strategy used was a TEMPO oxidation followed by peptidic coupling. After the optimization of the grafting reaction, the new systems (CNC-g-Jeffamine) were characterized and new properties were identified particularly their insensitivity to salts, their ability to be redispersed in organic solvents, their surfactant character, their enhanced thermal stability and their reversible thermoagregation. The structural study using small angles neutrons scattering gave us information about thicknesses of the polymer corona and the chains conformation. New characteristics of their self-assembly into chiral-nematic phases were noticed more particularly concerning phase diagrams and cholesteric pitches. The second grafting strategy consisted in an oxidation using periodate ion followed by reductive amination. Results showed a partial detachment of cellulose chains after oxidation. A complete detachment was observed after grafting the polymer chains to finally obtain cellulose-Jeffamine copolymers which could have interesting properties to study.
|
4 |
Effet de l'oxydation TEMPO des fibres de lin sur l'efficacité de greffage des agents de couplage silane / TEMPO oxidation effects of flax fibers on the efficiency of grafting of silane coupling agentsHarirforoush, Mohammad Javad January 2017 (has links)
Abstract : The applications of natural fibers as reinforcing materials have received lots of attentions and
interests due to their unique advantages such as direct derivation from earth, sustainability,
degradability and so on. In addition, the employment of plant fibers as raw materials in engineering
and industries can promote sustainable agriculture. Cultivation of oilseed flax has grown recently
from 600,000 to 800,000 hectares in past few years in Canada. This can also provide a great
potential to use flax waste (straw), 2,000 kg/ha annually, as reinforcing materials in industry and
promote sustainable agriculture. These huge amounts of flax residuals usually burned or thrown
away which as result, leads to emission of CO2 into the atmosphere.
In two past decades, the employment of natural fibers in bio-composites as an alternative for flax
residuals disposal has received lots of interest and attention. The dramatic increase of publications
during this period supports this fact. This attention and interest has been attributed to public
awareness, Legal restrictions and environmental concerns associated to the synthetic fibers.
Moreover, the significant advantages of natural fibers such as low resin consumption, low tools
wear, cost effectivity; availability, environmentally friendly, degradability, low density and high
specific properties have converted the application of them very favorable.
However, the hydrophilic nature of cellulosic fibers as a main disadvantage makes them
incompatible with hydrophobic polymeric matrices. This poor compatibility between cellulosic
fibers and polymeric matrices mostly attributes to the presence of hydroxyl functional groups on
the backbone of the flax fibers that causes to hydrophilic properties of cellulosic fibers and poor
interfacial adhesion between cellulosic fibers and polymeric matrices.
The main goal of this research thesis is to convert of primary alcoholic groups (OH) available on
the surface of flax fiber to carboxyl groups by employment of TEMPO oxidation system in order
to facilitate the silane treatment process. Subsequently, carboxyl groups can more easily interact
with silane coupling agents. The surface functionality of as-received and treated fibers was
characterized using Fourier transform infrared and X-ray photoelectron spectroscopy.
Dynamic contact angle tensiometer was used to compare wettability of the oxidized and nonoxidized
fibers after the silane treatment. The interaction between flax fiber and polymer was
characterized using scanning electron microscopy (SEM). The results indicated that the TEMPO
iii
oxidation significantly improved the bonding efficiency of the silane coupling agents on the fiber
surface. Thus, the compatibility between the flax fibers and the epoxy resin was improved. In
addition, the water absorption of the modified fibers was remarkably reduced, while the contact
angle of the flax fibers was increased. / Les demandes des fibres naturelles comme matériaux de renforcement ont reçu beaucoup d'attentions et d'intérêts en raison de leurs avantages uniques tels que la dérivation directe de la terre, la durabilité, la dérivabilité, etc. En outre, l'emploi des fibres végétales comme matières premières dans l'ingénierie et les industries peut favoriser l'agriculture durable. La culture du lin oléagineux est passée de 600 000 à 800 000 hectares au cours des dernières années au Canada. Cela peut également constituer un excellent potentiel d'utilisation des déchets de lin (paille), 2 000 kg par an par année, en tant que matériaux de renfort dans l'industrie et promouvoir l'agriculture durable. Ces énormes quantités de résidus de lin sont généralement brûlées ou jetées, ce qui entraîne l'émission de CO2 dans l'atmosphère.
Au cours des deux dernières décennies, l'emploi de fibres naturelles dans les biocomposites comme possibilité à l'élimination des résidus de lin a suscité beaucoup d'intérêt et d'attention. L'augmentation spectaculaire des publications au cours de cette période prend en charge ce fait. Cette attention et cet intérêt ont été attribués à la sensibilisation du public, aux restrictions légales et aux préoccupations environnementales associées aux fibres synthétiques. En outre, les avantages importants des fibres naturelles, comme la faible consommation de résine, l'usure des outils, l'efficacité des coûts; la disponibilité, l'environnement, la dégradabilité, la faible densité et les propriétés spécifiques élevés ont transformé la demande des fibres naturelles très favorable.
Cependant, la nature hydrophile des fibres cellulosiques comme inconvénient principal les rend incompatibles avec des matrices polymères hydrophobes. Cette mauvaise compatibilité entre les fibres cellulosiques et les matrices polymères attribue principalement à la présence de groupes fonctionnels hydroxyles sur l'ossature des fibres de lin qui provoque des propriétés hydrophiles des fibres cellulosiques et une faible adhérence interfaciale entre les fibres cellulosiques et les matrices polymères.
L'objectif principal de cette thèse de recherche est de convertir des groupes alcooliques primaires (OH) disponibles à la surface de la fibre de lin en groupes carboxylés par l'emploi d'un système d'oxydation TEMPO afin de faciliter le traitement du silane. Par la suite, les groupes carboxylés peuvent interagir plus facilement avec des agents de couplage au silane. La fonctionnalité de surface des fibres reçues et traitées a été caractérisée en utilisant la spectroscopie à infrarouge à transformer de Fourier et à la Spectrométrie photo électronique X.
Un tensiomètre à angle de contact dynamique a été utilisé pour comparer la mouillabilité des fibres oxydées et non oxydées après le traitement au silane. L'interaction entre les fibres de lin et le polymère a été caractérisée en utilisant une microscopie électronique à balayage (MÉB). Les résultats indiquent que l'oxydation TEMPO a considérablement amélioré l'efficacité de liaison des agents de couplage silane sur la surface de la fibre. Ainsi, la compatibilité entre les fibres de lin et la résine époxy a été améliorée. En outre, l'absorption d'eau des fibres modifiées a été considérablement réduite, tandis que l'angle de contact des fibres de lin a été augmenté.
|
5 |
Microfibrillation of pulp fibres:the effects of compression-shearing, oxidation and thermal dryingKekäläinen, K. (Kaarina) 29 November 2016 (has links)
Abstract
Cellulose micro- and nanofibrils are elongated, flexible nano-scale particles produced from natural fibres with intensive mechanical treatments, usually in the form of dilute aqueous suspensions. Due to the recalcitrant structure of the fibres, mechanical, chemical and enzymatic pre-treatments are often used to loosen the fibre wall structure so as to facilitate the mechanical liberation of micro- and nanofibrils and reduce the high amount of mechanical energy needed. However, it is still unclear how different chemistries affect the disintegration phenomena and how mechanical action starts to unravel the fibre structure, and thus how micro- and nanofibrillation could best benefit from the pre-treatments. In addition, the high water content used in the process increases the production and transportation costs of the material, so that the solids content should be increased. Reducing the water content before or after production would be challenging, however, due to changes in fibre properties during drying (hornification) and the tendency for the resulting nanofibrils to agglomerate. Also, the effect of high solids content and temperature on the reduction of fibres to nano- and microfibrils is still not well understood.
The aims of this work were to follow the changes in fibre morphology after mechanical, chemical and thermal modification and address their effects on the disintegration phenomena of the fibres to microfibrils. Mechanical compression-shearing, two selective oxidations and thermal drying in combination with TEMPO oxidation were used to modify the fibre structure before mechanical disintegration in a high-shear homogenizer or ball mill.
The results showed that sufficient swelling of the fibre cell walls was a prerequisite for successful microfibrillation. Swelling can be promoted by loosening the hydrogen bonding network with compression and shearing forces or by increasing the charge density. Different charge thresholds were observed for microfibrillation depending on the chemistry used. Extremely hornified fibres were also successfully microfibrillated with the aid of TEMPO oxidation. Different fibre disintegration mechanisms were seen depending on the modification type and disintegration conditions. In addition, micro- and nanofibrils and nanocrystals were successfully produced under high solids (≥ 50%) conditions. / Tiivistelmä
Luonnonkuiduista saatavat selluloosamikro- ja -nanofibrillit ovat pitkiä ja joustavia nanokokoluokan partikkeleita, joita valmistetaan yleensä intensiivisillä mekaanisilla käsittelyillä vesiliuoksissa. Kuitujen lujan rakenteen vuoksi valmistuksessa käytetään usein mekaanisia, kemiallisia ja entsymaattisia esikäsittelyjä heikentämään kuituseinämän tiivistä rakennetta, mikä helpottaa mikro- ja nanofibrillien irtoamista kuituseinämästä, sekä alentaa valmistuksen mekaanisen energian tarvetta. On kuitenkin edelleen epäselvää, miten erilaiset kemialliset käsittelyt vaikuttavat kuitujen hajoamiseen, miten kuiturakenne alkaa purkautua mekaanisessa käsittelyssä ja miten esikäsittelyillä voitaisiin parhaiten edistää mikro- ja nanofibrilloitumista. Valmistuksessa käytettävä korkea vesipitoisuus lisää mikro- ja nanofibrillien valmistus- ja kuljetuskustannuksia. Vesipitoisuuden alentaminen valmistuksessa tai sen jälkeen on kuitenkin haastavaa, sillä kuituominaisuudet muuttuvat kuivatuksessa ja valmiit nanofibrillit kimppuuntuvat helposti. Korkean kuiva-ainepitoisuuden ja lämpötilan vaikutusta kuidun hajoamiseen mikro- ja nanofibrilleiksi ei myöskään ymmärretä vielä täysin.
Työn tarkoituksena oli tutkia sellukuitujen rakenteen muutoksia mekaanisen, kemiallisen ja lämpömuokkauksen seurauksena, sekä tutkia niiden vaikutusta kuidun purkautumiseen mikrofibrilleiksi. Kuiturakennetta muokattiin puristus-hiertomenetelmällä, kahdella selektiivisellä hapetusmenetelmällä, sekä lämpökuivauksen ja nk. TEMPO-hapetuksen yhdistelmällä ennen kuitujen mekaanista hajottamista joko leikkaavassa homogenisaattorissa tai kuulamyllyssä.
Tulosten perusteella riittävä kuituseinämän turvottaminen oli edellytys onnistuneelle mikrofibrilloinnille. Turpoamista saatiin edistettyä hajottamalla kuiduissa olevia vetysidosverkostoja puristus- ja leikkausvoimilla tai kasvattamalla anionisen varauksen määrää kuiduissa. Varauksen kynnysarvo mikrofibrilloitumiselle riippui käytetystä hapetusmenetelmästä. Myös kuivatuksessa erittäin sarveistuneet kuidut saatiin mikrofibrilloitua TEMPO-hapetuksen avulla. Tulosten perusteella kuiduilla on erilaisia hajoamismekanismeja, jotka riippuvat käytetystä muokkauksesta, sen intensiivisyydestä, sekä hajottamisolosuhteista. Työssä onnistuttiin myös valmistamaan mikro- ja nanofibrillejä, sekä nanokiteitä tavanomaista huomattavasti korkeammassa (≥50 %) kuiva-ainepitoisuudessa.
|
6 |
Extraction de nanofibrilles de cellulose à structure et propriétés contrôlées : caractérisation, propriétés rhéologiques et application nanocomposites / Extraction of cellulose nanofibrils with structure and controlled properties : characterization, rheologic properties and nanocomposites applicationBen Hamou, Karima 24 October 2015 (has links)
Les nanofibrilles de cellulose (NFC), obtenus par oxydation TEMPO des microfibrilles de cellulose native sous forme de suspensions colloïdales aqueuses, sont des nanoparticules biosourcées ayant des propriétés rhéologiques et optiques particulièrement séduisantes pour la conception de nanomatériaux à haute performance. Le but principal de cette étude était de contrôler et optimiser les conditions de préparation de ces NFCs extraites du rachis de palmier dattier en examinant le temps d'oxydation et le nombre de passe à travers l'homogéinsateur.La réussite de la réaction a été démontrée par spectroscopies FT-IR. Le taux de groupements carboxyliques a été calculé par dosage conductimétrique et était compris entre 221 et 772 µmol/g d'anhydroglucose. Les études morphologiques montrent que NFCs oxydées sont assez bien individualisés grâce à l'introduction des charges négatives à leur surface qui induisent des forces de répulsion électrostatique entre les fibrilles. Une attention particulière a été accordée à la viscoélasticité des suspensions NFC oxydées TEMPO dont le suivi a été réalisé par un rhéomètre ARES-G2TA. Ces nanocharges ont ensuite été incorporées au sein d'un thermoplastique (PVAc), puis les matériaux nanocomposites obtenus ont été caractérisés par MEB, ATG, DSC, DMA et par des tests mécaniques. / The cellulose nanofibrils (CNF), obtained by TEMPO oxidation of native cellulose microfibrils as colloidal aqueous suspensions, are biosourced nanoparticles having rheological and optical properties well adapted for the conception of new nanomaterials with high performance.The main purpose of this study was to control and optimize the conditions for preparing these NFCs extracted from date palm tree by examining the oxidation time and the number of passes through the homogenizer..The success of the reaction was demonstrated by FT-IR spectroscopy. The rate of the carboxylic groups has been calculated by conductometric titration and ranged between 221 and 772 mol / g of anhydroglucose. Morphological studies show that oxidized CNFs are very individualized by introducing negative charges on their surfaces that induce electrostatic repulsion forces between the fibrils. Particular attention has been given to the viscoelasticity of oxidized-TEMPO CNF suspensions whose monitoring was carried out by a rheometer ARES-G2TA. These nanocharges were incorporated in a thermoplastic (PVAc) and nanocomposite materials obtained were characterized by SEM, TGA, DSC, DMA and mechanical testing.
|
Page generated in 0.0935 seconds