• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Flow characterization in resin transfer moulding

Weitzenböck, Jan Rüdiger January 1996 (has links)
No description available.
2

Furniture design with composite materials

Buck, Lyndon January 1997 (has links)
This thesis examined the feasibility of fibre composite reinforcement in the furniture industry. The development of post war furniture design was reviewed, with particular emphasis on the main design movements and the use of new materials and technologies. The use of fibre composite materials in contemporary furniture was discussed in terms of technical development, environmental effects and psychological acceptance. Fibre reinforcements and adhesives were compared, as were fabrication techniques applicable to the existing British furniture industry. Particular emphasis has been placed on the fibre reinforcement of laminated timber sections as a method of overcoming many of the manufacturing problems of composites. Methods of analysing the behaviour under load of fibre reinforced laminated wood were reviewed. Resistance among the furniture buying public to modem, non-traditional furniture design was discussed, along with ways of making composite materials more aesthetically acceptable. Experimentation to determine the mechanical properties of fibre composite reinforced wood against wood control samples was undertaken, along with methods used to analyse the results for flat and curved samples. Modulus of elasticity, modulus of rupture and impact strength were measured, as was the level of distortion of the samples before and after testing. A full size chair form was produced to demonstrate the behaviour of the material on a larger scale. The development of the design was discussed in terms of ergonomic requirements, aesthetics, practicality and environmental concerns. The problem of predicting the behaviour of complex shapes was discussed and a finite element analysis of the form is carried out to gain an accurate picture of the composite's performance. Production of fibre reinforced materials was discussed, along with the furniture industry's reluctance to invest in new materials and technologies. The feasibility of adapting traditional furniture making skills and equipment to the production of fibre composite reinforced wood has been assessed.
3

An investigation into the manufacture and mechanical properties of an Al-steel hybrid MMC

Davenport, Rebecca A. January 2018 (has links)
One of the most significant challenges in the composite development field is to find a low-cost manufacturing route capable of producing large volumes of material. This thesis develops and characterises a potential avenue for addressing this, an induction furnace-based process. This process produced a composite of A357 matrix and 10% wt Dramix 3D 80/30 SL steel fibres. The method was evaluated by microstructural analysis and optimum casting parameters were approximated. The fibres were introduced to liquid A357 at 700°C and the composite was brought to a measured temperature of 650°C over not more than 120 seconds before being removed from the furnace and cooled. 10% wt was the ideal reinforcement ratio for this process. Characterising the tensile and compressive strength of the composite material, it reached a peak stress 130% higher than A357 produced under the same conditions, though the peak stresses were still 20% of the literature values for T6 tempered A357. This suggests the need for development of a temper which does not degrade the properties of the composite. 3-point bending tests and some tensile specimens also showed post-failure strength. Under dynamic loading, the composite showed a peak stress in excess of 100 MPa without reaching maximum compression under SHPB loading, and comparable performance to SiC-reinforced MMCs under ballistic testing. The linear decrease in work-hardening with increasing distance from the impact site shows shock and pressure-pulse dissipation properties, attributed to the difference in acoustic impedance between the matrix and the reinforcement.
4

A Study of Fibre-matrix Interactions in Biodegradable Kraft Pulp Fibre-reinforced Polylactic Acid Composites

Fazl, Mandana 22 November 2012 (has links)
As the plastics sector moves towards sustainable growth and development, natural fibres start to play an important role as constituents in composite materials in several industries including automotives. However, drawbacks such as fibre-matrix incompatibility and poor fibre dispersion still exist. In this thesis, Kraft pulp fibre (KF)-Polylactic Acid (PLA) composites were prepared using thermal compounding and aqueous blending to study fibre-matrix interactions. Fibre surfaces were also modified to improve fibre dispersion and water absorption properties. A biorefinery lignin was added to PLA and high density polyethylene (HDPE) as a biofiller and potential interface modifier. Aqueous blended composites showed better mechanical and dynamic mechanical performance than the thermally compounded materials. The fibre surface modification improved dispersion and material properties at higher fibre content. Furthermore, the addition of lignin to polymers resulted in improved mechanical properties in both PLA and HDPE; however, lignin failed to improve interface bonding between KF and PLA.
5

A Study of Fibre-matrix Interactions in Biodegradable Kraft Pulp Fibre-reinforced Polylactic Acid Composites

Fazl, Mandana 22 November 2012 (has links)
As the plastics sector moves towards sustainable growth and development, natural fibres start to play an important role as constituents in composite materials in several industries including automotives. However, drawbacks such as fibre-matrix incompatibility and poor fibre dispersion still exist. In this thesis, Kraft pulp fibre (KF)-Polylactic Acid (PLA) composites were prepared using thermal compounding and aqueous blending to study fibre-matrix interactions. Fibre surfaces were also modified to improve fibre dispersion and water absorption properties. A biorefinery lignin was added to PLA and high density polyethylene (HDPE) as a biofiller and potential interface modifier. Aqueous blended composites showed better mechanical and dynamic mechanical performance than the thermally compounded materials. The fibre surface modification improved dispersion and material properties at higher fibre content. Furthermore, the addition of lignin to polymers resulted in improved mechanical properties in both PLA and HDPE; however, lignin failed to improve interface bonding between KF and PLA.
6

Carbon Fibre Reinforcement of Ceramic Water Filters

Nicholson, Diana 18 September 2012 (has links)
This research strived to examine the potential for carbon fibre to improve the strength characteristics of ceramic water filters (CWFs) to improve their length of use in the field while maintaining, or improving, existing flow and bacteria attenuation capabilities. Model-scale CWF discs were made exploring several configurations of carbon fibre reinforcement and were tested for flow through rates, E coli attenuation, and equi-biaxial flexural strength. It was determined that, while the particular carbon fibre configurations explored in this study did not increase the strength of the CWF discs, they did provide some benefit such as improving flow-through rates while minimally detracting from bacteria removal. This indicates that the reinforcement of CWFs has potential and further research should be conducted to determine an appropriate reinforcement configuration to improve both their strength characteristics. Given that CWFs are gaining more widespread use in many countries worldwide, extending their lifespan of use would have significant value.
7

The influence of mixing ratio on the fatigue behaviour of fibre reinforced polymers

Stuhlinger, Martin Ernst January 2013 (has links)
Magister Scientiae Dentium - MSc(Dent) / Statement of the problem: Fibre reinforcement of polymethyl methacrylate (PMMA) denture base material is known to improve the strength, as well as the fatigue behavior, of the material. The powder liquid (P/L) ratio of PMMA is often changed to modify the handling properties of the material. Little is known about the effect of this deviation from manufacturer’s guidelines on the fatigue behaviour of the fibre reinforced product. Purpose: This study compared the flexural strength (FS) of PMMA reinforced with glass fibre using different P/L ratios, before and after cyclic loading. Methods and materials: Three groups, with 50 glass fibre reinforced (everStick nonimpregnated fibers) heat-cured PMMA resin (Vertex Rapid Simplified) specimens each, were prepared using a custom-made template (dimensions 10x9x50mm). Each group had a different P/L ratio: the control group (100%) had the manufacturer’s recommended ratio; the 90% and 80% groups had reduced P/L ratios (by weight).Twenty five specimens from each group were subjected to a 3-point bending compression test using a universal testing machine. The remaining 25 specimens from each group were subjected to cyclic loading (104 cycles) before compression testing. The (FS) was calculated using the highest force (Fmax) before specimen failure. Flexural strength was calculated using the equation: FS=3WL/2bd2. Within each group, median FS values before and after cyclic loading were compared by means of a non-parametric analysis of variance. The Aligned Ranks Transform method was used for the analysis. Statistical significance was set at p=0.05. Results: The Fmax (N) of the control (100%), 90% and 80% groups fatigued and unfatigued were 100%: 1665 (fat), 1465 (unfat); 90%: 1679 (fat), 1548 (unfat) and 80%: 1585 (fat), 1467 (unfit) respectively. There was no significant interaction between Mix ratio and Fatigue state, and the 80% mix had a significantly higher mean than either the 90% or 100% mix (with differences of about 0.3 units for both). The Fatigued state had a higher mean than the Un- fatigued state by about 6.0 units. Using FS (MPa) it was found that the fatigued 80% mix specimens had the highest value. The FS MPa of the control (100%), 90% and 80% groups fatigued and un-fatigued were 64.3, 60.6; 66.9, 65.6 and 70.2, 69.3 respectively. The fact that fatiguing strengthened the specimens merits further research. When observing the broken specimens it was found that there was a complete debonding of the fibres and the PMMA. Conclusion and clinical relevance: a) Fibre: The benefit of using glass fibre bundles to reinforce prostheses fabricated using heat cured PMMA is questionable due to problems with bonding between the fibre bundles and the heat cured PMMA resin. b) Fatiguing: An average person chews 107 times during a 3 year period. A limited period of average masticatory forces should not have a detrimental effect on prostheses made from heat cured PMMA resin. c) Mix ratio: Within the normal parameters of laboratory techniques the mix ratio of PMMA resin had no significance on the fracture resistance of the prostheses. Due to the high cost of the fibres used for the reinforcement and the limited success and insignificant results achieved in this study, this researcher cannot recommend using Stickbond or Stick fibers for the reinforcement of dentures made with heat cured PMMA resin.
8

Glass-fibre reinforcement on steel to timber connections. : A parametric study through FEM modelling on double-shear single-dowelled connections.

Merlo García, Ramón January 2017 (has links)
In a context where timber is gaining popularity as a building material and glass-fibre reinforced composites (GFRC) are becoming more accessible in a wide variety of formats, it is considered appropriate to reconsider the combination of these two materials. Additionally, given the increasing use of laminated timber elements where stiffness and strength are better controlled, attention is drawn back to the connection between elements. For these reasons, it is considered of interest to study reinforcing possibilities for connections within timber structures. This work consists in a parametric study of a single-dowelled connection between a timber part and a slotted-in steel plate, reinforced wirh GFRC plates glued into the timber slot at both sides of the steel plate. The study was carried out through simulations in ABAAUS Finite Element Analysis software considering the effect of specimen's geometry and the fibre distribution within the GFRC. Results show the increase of stiffness for the different configurations and give an insight of what can be expected from such type of reinforcements.
9

Vláknové kompozity s alkalicky aktivovanou struskovou matricí / Fibre coposites with alkali -activated slag matrix

Pluskalová, Barbora January 2015 (has links)
This master thesis is concerns the preparation of Alkali Activated Materials, specifically Alkali Activated Slag (AAS), with the addition of fiber reinforcement. Alkali Activated Materials have great potential for use in construction practice. However, their use is limited by certain undesirable properties, which can be diminished by adding fiber reinforcement. This thesis deals with the influence of carbon fibers (2 % by weight of the binder) and carbon nanotubes (0,2 % by weigh of the binder) on the mechanical properties, microstructure and shrinkage of AAS. The results of the experiments which were carried out correspond with the literary research. Conclusions of this thesis agree with research published in original scientific papers.
10

Analyses of shotcrete stress states due to varying lining thickness and irregular rock surfaces

Sjölander, Andreas January 2017 (has links)
Shotcrete is sprayed concrete applied pneumatically under high pressure and was invented in the beginning of the 1900's. This new technique decreased the construction time and since steel fibres were introduced in the shotcrete during the 1970's, shotcrete has been the primary support method for tunnels. Tunnels excavated with the drill and blast method creates a highly irregular rock surface which results in a shotcrete lining with varying thickness. The structural behaviour as well as the loads acting on the shotcrete lining depends on the interaction between the shotcrete, rock and rock bolts. There are several parameters influencing this interaction, e.g. bond strength, the stiffness of the rock and thickness of the shotcrete. All of these parameters are difficult to predict accurately which makes the structural design of the lining to a complex problem. This thesis present the first part of a research project with the long-term goal to improve the understanding of the structural behaviour of the shotcrete lining. To achieve this, numerical modelling have been used to study the build up of stresses and cracking of shotcrete when subjected to restrained loading caused by e.g. temperature differences and drying shrinkage. The response in the lining when subjected to a gravity load from a block has also been studied. The model is capable of describing the non-linear deformation behaviour of both plain and fibre reinforced shotcrete and uses presented in situ variations in thickness to more accurately account for the effects of expected variations in thickness. The thesis discuss and demonstrate the effect of important loads that acts on the shotcrete lining and how the irregular geometry of the rock surface in combination with the varying thickness of the shotcrete affect the development of stresses in the lining. It is also discussed how a full or partial bond failure affect the structural capacity of a shotcrete lining. / Sprutbetong är betong som appliceras pneumatiskt under högt tryckt, en metod utvecklad i början av 1900-talet. Kort därefter gjordes de första försöken att använda sprutbetong som bergförstärkning. Den här nya tekniken minskade produktionstiden och när stålfibrer introduceras under 1970-talet kunde det tunga arbetet med att placera armering minimeras. Sedan dess har sprutbetong blivit den preliminära förstärkningsmetoden, särskilt för tunnlar i hårt berg där tunna lager av sprutbetong ibland kan användas som den enda förstärkningsåtgärden.  Tunnlar byggs normalt genom metoden "borrning-sprängning" vilket leder till att bergytan där sprutbetongen appliceras få r en oregelbunden form. Under sprutning är det svårt att fastställa den exakta tjockleken och sprutbetongen har därmed en oregelbunden tjocklek. Beroende på in situ förhållanden kan oarmerad eller fiberarmerad sprutbetong i kombination med bergbultar användas för att förstärka berget. Det strukturella beteendet och lasterna som påverkar förstärkningen beror på interaktionen mellan sprutbetong, berg och bergbultar. Denna samverkan styrs av flera parametrar som t ex; vidhäftningshållfastheten, bergets styvhet och tjockleken hos sprutbetongen. Dessa parametrar är svåra att förutsäga vilket gör dimensionering av en sprutbetongförstärkningen till ett komplext problem. Den här uppsatsen presenterar den första delen av ett forskningsprojekt med det långsiktiga målet att öka förståelsen för det strukturella beteendet hos en sprutbetongförstärkning. För att uppnå detta har numerisk modellering använts för att studera spänningsuppbyggnaden och uppsprickningen av sprutbetong som utsätts för förhindrade rörelser orsakade av temperaturförändringar eller uttorkningskrympning. Sprutbetongens beteende när den utsätts för en blocklast har också studerats. En numeriskt modell för att analysera spänningarna i sprutbetong som tar hänsyn till tidsberoende materialegenskaper har använts. Modellen kan beskriva det icke-linjära deformationsbeteendet av oarmerad samt fiberarmerad sprutbetong och använder sig av presenterad fältdata för att beskriva de förväntade tjockleksvariationerna. Uppsatsen disskuterar och demonstrerar effekten av viktiga laster som verkar på sprutbetongförstärkningen och hur bergets oregelbundna yta i kombination med sprutbetongens varierande tjocklek påverkar spänningsuppbyggnaden i förstärkningen. Det diskuteras också hur ett fullständigt eller partiellt vidhäftningsbrott på verkar sprutbetongförstärkningens bärförmåga. / <p>QC 20170418</p>

Page generated in 0.0847 seconds