• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Desempenho ao impacto de laminados fibra-metal utilizando reforços termoplásticos. / Impact performance of fibre-metal laminates with thermoplastic material.

Santiago, Rafael Celeghini 07 April 2014 (has links)
Neste trabalho estuda-se o comportamento de laminados fibra-metal em regime de impacto, a partir de uma abordagem teórica, numérica e experimental. Os materiais estudados consistem em camadas finas intercaladas de alumínio 2024-T4 e de um novo material termoplástico de polipropileno (PP) de alta resistência mecânica. Eventos de impacto de baixa e alta velocidade contra placas destes laminados foram realizados a partir de um martelo de impacto e de um canhão pneumático, respectivamente. Nestes experimentos buscou-se identificar as condições limite de ruptura e perfuração das amostras, assim como parâmetros de comportamento do material. O laminado fibra metal de PP (ou TFML) e seus constituintes foram caracterizados a taxas de deformação entre 10-4 / s e 102 / s, utilizando-se máquinas de ensaio universal comerciais e um dispositivo desenvolvido especificamente para este estudo, capaz de caracterizar materiais em taxas intermediárias de deformação. Os modelos teóricos de Jones e Reid-Wen foram adaptados para utilização com TFMLs, sendo capazes de identificar o comportamento do material em regime de baixa e alta velocidade de impacto, respectivamente. Um modelo numérico do TFML em regime de impacto foi desenvolvido utilizando o programa comercial LSDyna. Resultados experimentais e teóricos foram confrontados com esse, apresentado boa correlação na predição do limiar de falha e limite balístico do material. Uma vez que o comportamento do TFML ao impacto foi modelado, buscou-se identificar o efeito da distribuição de camadas e composição de constituintes no comportamento do material ao impacto. Estudos também foram conduzidos com o intuito de identificar a influência da taxa de deformação, geometria do indentador e localização do impacto no comportamento dos laminados. Por fim, uma configuração de TFML foi proposta visando melhoria de seu desempenho ao impacto. / In this work, the behaviour of fibre-metal laminates under impact loading is studied by using theoretical, numerical and experimental approaches. The material is a combination of thin aluminium 2024-T3 layers and an innovative high strength thermoplastic polypropylene material. Low and high velocity impact events were performed using a falling weight machine and a gas-gun projectile launcher, respectively. The thermoplastic fibre-metal laminates (or TFML) and its constituents were mechanically characterized in the range of strain rates between 10-4 / s and 102 / s , using commercial universal testing machines and a specifically designed rig for tensile tests at intermediate strain rates. The Jones and Reid-Wen theoretical models were adapted to be used with TFML plates. A finite element model of the TFML under impact events was developed using LS-Dyna software. The numerical model revalled results that were compared with the theoretical models and the experimental data, providing reasonably similar results. Once the TFML impact behaviour was identified and modelled, the effect of the layers distribution and constituent composition on the TFML impact response was studied. Studies of the strain rate effect, identor geometry and the impact location were also performed. Finally, a TFML configuration was suggested in order to improve the TFML impact performance.
2

Desempenho ao impacto de laminados fibra-metal utilizando reforços termoplásticos. / Impact performance of fibre-metal laminates with thermoplastic material.

Rafael Celeghini Santiago 07 April 2014 (has links)
Neste trabalho estuda-se o comportamento de laminados fibra-metal em regime de impacto, a partir de uma abordagem teórica, numérica e experimental. Os materiais estudados consistem em camadas finas intercaladas de alumínio 2024-T4 e de um novo material termoplástico de polipropileno (PP) de alta resistência mecânica. Eventos de impacto de baixa e alta velocidade contra placas destes laminados foram realizados a partir de um martelo de impacto e de um canhão pneumático, respectivamente. Nestes experimentos buscou-se identificar as condições limite de ruptura e perfuração das amostras, assim como parâmetros de comportamento do material. O laminado fibra metal de PP (ou TFML) e seus constituintes foram caracterizados a taxas de deformação entre 10-4 / s e 102 / s, utilizando-se máquinas de ensaio universal comerciais e um dispositivo desenvolvido especificamente para este estudo, capaz de caracterizar materiais em taxas intermediárias de deformação. Os modelos teóricos de Jones e Reid-Wen foram adaptados para utilização com TFMLs, sendo capazes de identificar o comportamento do material em regime de baixa e alta velocidade de impacto, respectivamente. Um modelo numérico do TFML em regime de impacto foi desenvolvido utilizando o programa comercial LSDyna. Resultados experimentais e teóricos foram confrontados com esse, apresentado boa correlação na predição do limiar de falha e limite balístico do material. Uma vez que o comportamento do TFML ao impacto foi modelado, buscou-se identificar o efeito da distribuição de camadas e composição de constituintes no comportamento do material ao impacto. Estudos também foram conduzidos com o intuito de identificar a influência da taxa de deformação, geometria do indentador e localização do impacto no comportamento dos laminados. Por fim, uma configuração de TFML foi proposta visando melhoria de seu desempenho ao impacto. / In this work, the behaviour of fibre-metal laminates under impact loading is studied by using theoretical, numerical and experimental approaches. The material is a combination of thin aluminium 2024-T3 layers and an innovative high strength thermoplastic polypropylene material. Low and high velocity impact events were performed using a falling weight machine and a gas-gun projectile launcher, respectively. The thermoplastic fibre-metal laminates (or TFML) and its constituents were mechanically characterized in the range of strain rates between 10-4 / s and 102 / s , using commercial universal testing machines and a specifically designed rig for tensile tests at intermediate strain rates. The Jones and Reid-Wen theoretical models were adapted to be used with TFML plates. A finite element model of the TFML under impact events was developed using LS-Dyna software. The numerical model revalled results that were compared with the theoretical models and the experimental data, providing reasonably similar results. Once the TFML impact behaviour was identified and modelled, the effect of the layers distribution and constituent composition on the TFML impact response was studied. Studies of the strain rate effect, identor geometry and the impact location were also performed. Finally, a TFML configuration was suggested in order to improve the TFML impact performance.
3

Thermoplastbasierte hybride Laminate für Hochleistungsanwendungen im Leichtbau

Zopp, Camilo 15 February 2022 (has links)
Leichtbau zählt als eines der Zukunftstechnologien des 21. Jahrhunderts, um sowohl die Mobilitätsfragen von morgen zu beantworten als auch die klima- und energiepolitischen Ziele zu erreichen. Ein wesentlicher Fokus wird dabei auf Multi-Material-Systeme gelegt. Insbesondere die Kombination von faserverstärkten Kunststoffen und metallischen Legierungen zu sog. hybriden Laminaten zeigt ein hohes Substitutions- und Leichtbaupotential gegenüber klassischen monolithischen Konstruktionswerkstoffen. Vorrangig werden derartige hybride Schichtverbunde mit einer duroplastischen Matrix hergestellt, wodurch allerdings Restriktionen, bspw. gegenüber Produktivität, Recycling- und Lagerfähigkeit, resultieren. Eine besondere Alternative dazu bieten hybride Laminate auf Thermoplastbasis. Im Rahmen dieser Arbeit wurden die am Bundesexzellenzcluster MERGE entwickelten neuartigen thermoplastbasierten Schichtverbunde Carbon Fibre-Reinforced Polyamid/Aluminium Laminate (CAPAAL®) und Carbon Fibre-Reinforced Thermoplastic Polyurethane/Aluminium Laminate (CATPUAL) erforscht und im optimierten variothermen Pressprozess hergestellt. Um die Werkstoffverbunde über die Grundlagenforschung hinaus, etwa in der industriellen Nutzung, zu etablieren, wurden umfangreiche Charakterisierungen und Fertigungsstudien durchgeführt. Zum einen erfolgten mikrostrukturell-analytische Untersuchungen u. a. zu der Imprägniergüte, der Oberflächenbehandlung der Aluminiumlegierung und des Versagensverhaltens. Zum anderen fanden mechanisch-technologische Charakterisierungen bezüglich quasi-statischer Versuche unter Zug- und Biegebelastung sowie Ermüdungsversuche unter Biegebelastung im Niedrig-Frequenzbereich statt. Die quasi-statischen Untersuchungen der Subkomponenten (Aluminiumlegierung, Verbundwerkstoff) und der hybriden Laminate wurden sowohl unter Raumtemperatur als auch unter definierten Temperaturbelastungen und Konditionierungszuständen durchgeführt, um deren Sensitivität zu analysieren sowie zu bewerten. Ebenfalls erfolgten analytische Berechnungen zur Auslegung der hybriden Schichtverbunde basierend auf der klassischen Laminattheorie und der Mischungsregel unter Einbeziehung des Metallvolumengehalts. Darüber hinaus wurden die thermisch induzierten Eigenspannungen analytisch ermittelt und in die Berechnungen der quasi-statischen Kennwerte inkludiert. Anhand der Untersuchungen konnte nachgewiesen werden, dass CAPAAL® und CATPUAL als „maßgeschneiderte“ Halbzeuge oder Strukturbauteile mit einem hohen Leichtbaupotential für großseriennahe Anwendungen prädestiniert sind. Diese weisen in Abhängigkeit der medialen Belastungen eine höhere Performance und ein weniger katastrophales Versagensverhalten als die entsprechenden Faser-Kunststoff-Verbunde auf. Zudem wurde konstatiert, dass eine hervorragende Ermüdungsfestigkeit unter Biegebelastung vorliegt. Die theoretischen Vorhersagen weisen vor allem über den Ansatz der Mischungsregel eine gute Korrelation zu den experimentell ermittelten Kennwerten auf.:1 Einleitung 2 Stand der Wissenschaft und Technik 3 Materialien und experimentelle Untersuchungen 4 Versuchsergebnisse und Diskussion 5 Bewertung der erzielten Ergebnisse 6 Ausgewählte Leichtbaulösungen 7 Zusammenfassung und Ausblick / Lightweight construction is considered one of the future technologies of the 21st century, both to answer tomorrow's mobility questions and to achieve climate and energy policy goals. A major focus is placed on multi-material systems. In particular, the combination of fibre-reinforced plastics and metal alloys to form so-called hybrid laminates shows a high substitution and lightweight construction potential compared to classic monolithic construction materials. Such hybrid laminates are primarily produced with a thermoset matrix, which results in restrictions, e. g. with regard to productivity, recyclability and storability. Hybrid laminates based on thermoplastics offer a special alternative. In the context of this work, the novel thermoplastic-based laminates Carbon Fibre-Reinforced Polyamid/Aluminium Laminate (CAPAAL®) and Carbon Fibre-Reinforced Thermoplastic Polyurethane/Aluminium Laminate (CATPUAL) were researched and produced in an optimised vario-heat pressing process. In order to establish the material composites beyond basic research, for example in industrial use, extensive characterization and manufacturing studies were carried out. On the one hand, microstructural-analytical characterisations were conducted, for example, on the impregnation quality, the surface treatment of the aluminium alloy and the failure behaviour. On the other hand, mechanical-technological investigations were carried out with regard to quasi-static tests under tensile and bending load as well as fatigue tests under bending load in the low-frequency range. The quasi-static tests of the subcomponents (aluminium alloy, composite material) and hybrid laminates were carried out both at room temperature and under defined temperature loads and conditioning conditions in order to analyse and evaluate their sensitivity. Analytical calculations for the design of the hybrid laminates based on the classical laminate theory and the rule of mixtures including the metal volume content were also considered. Furthermore, the thermally induced residual stresses were determined analytically and included in the calculations of the quasi-static characteristic values. Based on the investigations, it was possible to prove that CAPAAL® and CATPUAL are predestined as 'tailor-made' semi-finished products or structural components with a high lightweight construction potential for applications close to large-scale production. Depending on the medial loads, these exhibit higher performance and less catastrophic failure behaviour than the corresponding fibre-plastic composites. In addition, it was stated that there is an excellent fatigue strength under bending load. The theoretical predictions show a good correlation to the experimentally determined characteristic values, especially via the rule of mixtures approach.:1 Einleitung 2 Stand der Wissenschaft und Technik 3 Materialien und experimentelle Untersuchungen 4 Versuchsergebnisse und Diskussion 5 Bewertung der erzielten Ergebnisse 6 Ausgewählte Leichtbaulösungen 7 Zusammenfassung und Ausblick

Page generated in 0.0669 seconds