• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 10
  • 7
  • 2
  • 2
  • 1
  • Tagged with
  • 87
  • 87
  • 87
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Fyziologické a patofyziologické aspekty některých vybraných endokrinopatií. Vztah k metabolizmu tukové tkáně a inzulínové rezistenci / Physiologic and pathophysiologic aspects of selected endocrinopathies. Their relationship to adipose tissue matebolism and insulin resistance

Ďurovcová, Viktória January 2012 (has links)
The pathogenesis of insulin resistance is a complex and still intensively studied issue. Endocrine and paracrine activity of the adipose tissue together with mi- tochondrial dysfunction are the most discussed potential factors included in the development of insulin resistance. In the first part of our study we examined the involvement of the adipose tissue and its secretory products in the etiopathogenesis of insulin resistance in patients with Cushing's syndrome, acromegaly and simple obesity. We focused on three important regulators of metabolic homeostasis - fibroblast growth factors 21 and 19 (FGF-21 and FGF-19) and adipocyte fatty acid binding protein (FABP-4). We found significantly elevated circulating levels of FGF-21 and FABP-4 ac- companying insulin resistance in both patients with simple obesity and patients with obesity connected to Cushing's syndrome, as compared to healthy controls. The concentrations of both substances were comparable between hypercortisolic and obese patients. This finding together with the absence of correlation be- tween the levels of FGF-21 resp. FABP-4 and cortisol suggest that the reason for elevation of their concentrations is obesity and its metabolic consequences themselves rather then the effect of hypercortisolism on FGF-21 and FABP-4 production. We found no...
82

Testing the renal signaling axis for FGF23

Ni, Pu 13 November 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / FGF23 is the central regulator for phosphate homeostasis. Both FGF23 and phosphate dysregulation are highly related with the progression of chronic kidney disease (CKD), which is a global health problem. In previous studies, FGF23 was found to be produced in bone and targeting the kidneys to regulate phosphate reabsorption and excretion. In the FGF23 signaling axis, it binds a receptor complex (αKlotho and FGFRs) in the distal convoluted tubules (DCT) and causes its biological effects in the proximal tubules (PT). The mechanism of how the signals passing on from DCT to PT is not clear. In my research, experiments were focused on the FGF23 signaling pathway within the kidney to study the communication steps between tubular cells. HBEGF treatment was given to FGF23 signaling impaired mouse models resulting in significant change of genes regulated by FGF23, indicating that HBEGF was important in the FGF23 signaling axis. Then high quality rabbit anti-mouse HBEGF antibodies were made to better study HBEGF activity in vivo and in vitro. A new cell model was characterized to test FGF23 effects on HBEGF signaling using Western blots and immunofluorescence. Lastly, the location of HBEGF activity was examined in the kidney in vivo. Immunostaining suggested that HBEGF activated the mitogen activated protein kinase (MAPK) pathway. This mapping may provide important information for the molecular relationships between FGF23 and HBEGF.
83

The Direct Reprogramming of Somatic Cells: Establishment of a Novel System for Photoreceptor Derivation

Steward, Melissa Mary 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Photoreceptors are a class of sensory neuronal cells that are deleteriously affected in many disorders and injuries of the visual system. Significant injury or loss of these cells often results in a partial or complete loss of vision. While previous studies have determined many necessary components of the gene regulatory network governing the establishment, development, and maintenance of these cells, the necessary and sufficient profile and timecourse of gene expression and/or silencing has yet to be elucidated. Arduous protocols do exist to derive photoreceptors in vitro utilizing pluripotent stem cells, but only recently have been able to yield cells that are disease- and/or patient-specific. The discovery that mammalian somatic cells can be directly reprogrammed to another terminally-differentiated cell phenotype has inspired an explosion of research demonstrating the successful genetic reprogramming of one cell type to another, a process which is typically both more timely and efficient than those used to derive the same cells from pluripotent stem cell sources. Therefore, the emphasis of this study was to establish a novel system to be used to determine a minimal transcriptional network capable of directly reprogramming mouse embryonic fibroblasts (MEFs) to rod photoreceptors. The tools, assays, and experimental design chosen and established herein were designed and characterized to facilitate this determination, and preliminary data demonstrated the utility of this approach for accomplishing this aim.
84

Efeitos da paratireoidectomia na biologia do tecido ósseo de pacientes com doença renal crônica e hiperparatireoidismo secundário / Effects of parathyroidectomy on the biology of bone tissue in patients with chronic kidney disease and secondary hyperparathyroidism

Pires, Geovanna Oliveira 06 February 2018 (has links)
INTRODUÇÃO: O hiperparatireoidismo secundário (HPTS) é uma complicação da doença renal crônica que compromete a integridade do esqueleto. Pacientes com HPS submetidos à paratireoidectomia (PTX) passam de uma condição de níveis séricos de paratormônio (PTH) muito elevados para outra, onde esses níveis hormonais caem drasticamente. Os efeitos da PTX no tecido ósseo são mal compreendidos, especialmente no que se refere às proteínas expressas por osteócitos, como o fator de crescimento de fibroblastos 23 (FGF23), dentin matrix protein 1 (DMP-1), fosfoglicoproteína de matriz extracelular (MEPE), esclerostina, Fator nuclear Kappa beta ligante (RANKL) e osteoprotegerina (OPG), que regulam a remodelação e a mineralização óssea. OBJETIVOS: Caracterizar a expressão óssea dessas proteínas por imuno-histoquímica e estabelecer relações com os dados da histomorfometria do tecido ósseo em pacientes com HPS, antes e após a PTX. MÉTODOS: Estudamos biópsias ósseas obtidas de um banco de biópsias de 23 pacientes com DRC e HPTS, que foram realizadas antes e 12 meses após a PTX. RESULTADOS: A avaliação dos parâmetros histomorfométricos demonstrou uma melhora da microarquitetura óssea, porém com um maior retardo em sua mineralização após a PTX. A análise da expressão das proteínas osteocíticas revelou um aumento significativo na expressão da esclerostina e da OPG e uma diminuição da relação RANKL/OPG após a PTX, sugerindo a participação dessas proteínas na melhora das lesões ósseas decorrentes do HPTS. Observamos um aumento significativo na expressão da OPG no grupo de pacientes que evoluiu com defeito de mineralização somente após a cirurgia, sugerindo a participação dessa proteína no retardo de mineralização óssea desses pacientes. A expressão das proteínas osteocíticas que participam da formação e mineralização óssea apresentou correlação com parâmetros envolvidos na remodelação óssea. CONCLUSÕES: Mudanças significativas na expressão óssea de proteínas osteocíticas que podem potencialmente regular a remodelação e a mineralização óssea foram observadas após a PTX / INTRODUCTION: Secondary hyperparathyroidism (SHPT) is a complication of chronic kidney disease that compromises skeletal integrity. Patients with SHPT undergoing parathyroidectomy (PTX) go from a very high serum parathyroid hormone (PTH) condition to another, where these hormonal levels dramatically fall. The effects of PTX on bone tissue are poorly understood, especially as regards proteins expressed by osteocytes, such as fibroblast growth factor 23 (FGF23), dentin matrix protein 1 (DMP-1), extracellular matrix phosphoglycoprotein (MEPE), sclerostin, Kappa beta ligand nuclear factor (RANKL) and osteoprotegerin (OPG), which regulate bone remodeling and mineralization. OBJECTIVES: Characterize bone expression of these proteins by immunohistochemistry and establish relations with bone tissue histomorphometry data in SHPT patients, before and after PTX. METHODS: We studied bone biopsies obtained from a biopsy database of 23 patients with CKD and SHPT, which were performed before PTX and 12 months after PTX. RESULTS: Evaluation of histomorphometric parameters showed improvement of bone microarchitecture, but with longer delay in mineralization after PTX. Analysis of osteocyte protein expression revealed significant increase in sclerostin and OPG expression and decrease in RANKL/OPG ratio after PTX, suggesting participation of these proteins in improvement of bone lesions due to SHPT. We observed significant increase in OPG expression in the group of patients who evolved with mineralization defect only after surgery, suggesting participation of this protein in bone mineralization delay of these patients. Expression of osteocyte proteins that participate in bone formation and mineralization correlated with parameters involved in bone remodeling. CONCLUSIONS: Significant changes in bone expression of osteocyte proteins that can potentially regulate bone remodeling and mineralization were observed after PTX
85

Patterning of the embryonic vertebrate Brain in Response to Fibroblast Growth Factor Signaling / Fgf-abhängige Musterbildungsprozesse in der embryonalen Entwicklung des Wirbeltiergehirns

Raible, Florian 23 June 2003 (has links) (PDF)
The term "pattern formation" refers to the process by which order unfolds in development. The present thesis deals with a particular aspect of molecular pattern formation during vertebrate embryogenesis. The model system in the focus of this study is the zebrafish, Danio rerio. In the early developmental phases of the zebrafish, Fibroblast growth factors (Fgfs) are involved in the molecular patterning of various tissues, including two regions of the brain, the forebrain and the midbrain-hindbrain region, affecting cellular processes as diverse as cell proliferation, differentiation, and axonal targeting. The goal of this study was to better understand the mechanisms by which Fgf signaling regulates pattern formation and embryogenesis. I addressed this question on several levels, investigating the extent of intracellular signaling (MAPK activation) relative to sources of Fgf expression, and the transcriptional responses of cells to Fgf signaling during embryogenesis. By a macroarray analysis, I identified putative transcriptional targets of Fgf signaling in late gastrulation, providing a set of molecules that are likely to act as functional players in relaying the patterning information encoded by Fgf signals. Among those are the secreted signaling molecules Chordin and Wnt8, as well as Isthmin, a novel secreted molecule that I found capable to interfere with anterior embryonic patterning. In addition, I identified two ETS domain transcription factors, Erm and Pea3, which constitute bona fide integrators of FgfR signaling. By gain- and loss-of-function studies, I demonstrate that transcript levels of erm and pea3 are tightly regulated by Fgf signaling. Detailed analysis of the expression patterns of erm and pea3 along with other Fgf target genes also provides evidence for a differential read-out of Fgf concentration in the embryo, consistent with a role of Fgf as a vertebrate morphogen. The discovery of novel molecular components downstream of Fgf receptor activity paves a way to characterize previously unknown or underestimated developmental roles of Fgfs in the molecular patterning of the forebrain, the eye and parts of the neural crest.
86

Efeitos da paratireoidectomia na biologia do tecido ósseo de pacientes com doença renal crônica e hiperparatireoidismo secundário / Effects of parathyroidectomy on the biology of bone tissue in patients with chronic kidney disease and secondary hyperparathyroidism

Geovanna Oliveira Pires 06 February 2018 (has links)
INTRODUÇÃO: O hiperparatireoidismo secundário (HPTS) é uma complicação da doença renal crônica que compromete a integridade do esqueleto. Pacientes com HPS submetidos à paratireoidectomia (PTX) passam de uma condição de níveis séricos de paratormônio (PTH) muito elevados para outra, onde esses níveis hormonais caem drasticamente. Os efeitos da PTX no tecido ósseo são mal compreendidos, especialmente no que se refere às proteínas expressas por osteócitos, como o fator de crescimento de fibroblastos 23 (FGF23), dentin matrix protein 1 (DMP-1), fosfoglicoproteína de matriz extracelular (MEPE), esclerostina, Fator nuclear Kappa beta ligante (RANKL) e osteoprotegerina (OPG), que regulam a remodelação e a mineralização óssea. OBJETIVOS: Caracterizar a expressão óssea dessas proteínas por imuno-histoquímica e estabelecer relações com os dados da histomorfometria do tecido ósseo em pacientes com HPS, antes e após a PTX. MÉTODOS: Estudamos biópsias ósseas obtidas de um banco de biópsias de 23 pacientes com DRC e HPTS, que foram realizadas antes e 12 meses após a PTX. RESULTADOS: A avaliação dos parâmetros histomorfométricos demonstrou uma melhora da microarquitetura óssea, porém com um maior retardo em sua mineralização após a PTX. A análise da expressão das proteínas osteocíticas revelou um aumento significativo na expressão da esclerostina e da OPG e uma diminuição da relação RANKL/OPG após a PTX, sugerindo a participação dessas proteínas na melhora das lesões ósseas decorrentes do HPTS. Observamos um aumento significativo na expressão da OPG no grupo de pacientes que evoluiu com defeito de mineralização somente após a cirurgia, sugerindo a participação dessa proteína no retardo de mineralização óssea desses pacientes. A expressão das proteínas osteocíticas que participam da formação e mineralização óssea apresentou correlação com parâmetros envolvidos na remodelação óssea. CONCLUSÕES: Mudanças significativas na expressão óssea de proteínas osteocíticas que podem potencialmente regular a remodelação e a mineralização óssea foram observadas após a PTX / INTRODUCTION: Secondary hyperparathyroidism (SHPT) is a complication of chronic kidney disease that compromises skeletal integrity. Patients with SHPT undergoing parathyroidectomy (PTX) go from a very high serum parathyroid hormone (PTH) condition to another, where these hormonal levels dramatically fall. The effects of PTX on bone tissue are poorly understood, especially as regards proteins expressed by osteocytes, such as fibroblast growth factor 23 (FGF23), dentin matrix protein 1 (DMP-1), extracellular matrix phosphoglycoprotein (MEPE), sclerostin, Kappa beta ligand nuclear factor (RANKL) and osteoprotegerin (OPG), which regulate bone remodeling and mineralization. OBJECTIVES: Characterize bone expression of these proteins by immunohistochemistry and establish relations with bone tissue histomorphometry data in SHPT patients, before and after PTX. METHODS: We studied bone biopsies obtained from a biopsy database of 23 patients with CKD and SHPT, which were performed before PTX and 12 months after PTX. RESULTS: Evaluation of histomorphometric parameters showed improvement of bone microarchitecture, but with longer delay in mineralization after PTX. Analysis of osteocyte protein expression revealed significant increase in sclerostin and OPG expression and decrease in RANKL/OPG ratio after PTX, suggesting participation of these proteins in improvement of bone lesions due to SHPT. We observed significant increase in OPG expression in the group of patients who evolved with mineralization defect only after surgery, suggesting participation of this protein in bone mineralization delay of these patients. Expression of osteocyte proteins that participate in bone formation and mineralization correlated with parameters involved in bone remodeling. CONCLUSIONS: Significant changes in bone expression of osteocyte proteins that can potentially regulate bone remodeling and mineralization were observed after PTX
87

Patterning of the embryonic vertebrate Brain in Response to Fibroblast Growth Factor Signaling

Raible, Florian 27 June 2003 (has links)
The term "pattern formation" refers to the process by which order unfolds in development. The present thesis deals with a particular aspect of molecular pattern formation during vertebrate embryogenesis. The model system in the focus of this study is the zebrafish, Danio rerio. In the early developmental phases of the zebrafish, Fibroblast growth factors (Fgfs) are involved in the molecular patterning of various tissues, including two regions of the brain, the forebrain and the midbrain-hindbrain region, affecting cellular processes as diverse as cell proliferation, differentiation, and axonal targeting. The goal of this study was to better understand the mechanisms by which Fgf signaling regulates pattern formation and embryogenesis. I addressed this question on several levels, investigating the extent of intracellular signaling (MAPK activation) relative to sources of Fgf expression, and the transcriptional responses of cells to Fgf signaling during embryogenesis. By a macroarray analysis, I identified putative transcriptional targets of Fgf signaling in late gastrulation, providing a set of molecules that are likely to act as functional players in relaying the patterning information encoded by Fgf signals. Among those are the secreted signaling molecules Chordin and Wnt8, as well as Isthmin, a novel secreted molecule that I found capable to interfere with anterior embryonic patterning. In addition, I identified two ETS domain transcription factors, Erm and Pea3, which constitute bona fide integrators of FgfR signaling. By gain- and loss-of-function studies, I demonstrate that transcript levels of erm and pea3 are tightly regulated by Fgf signaling. Detailed analysis of the expression patterns of erm and pea3 along with other Fgf target genes also provides evidence for a differential read-out of Fgf concentration in the embryo, consistent with a role of Fgf as a vertebrate morphogen. The discovery of novel molecular components downstream of Fgf receptor activity paves a way to characterize previously unknown or underestimated developmental roles of Fgfs in the molecular patterning of the forebrain, the eye and parts of the neural crest.

Page generated in 1.6037 seconds